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Review of LTR Retrotransposons in Plants
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Abstract; Retrotransposons in eucaryon are mobile genetic elements with ubiquitousdistribution, these ele-
ments can amplify themselves via RNA intermediates and increase their copy numbers in genome. In high
plants, retrotransposon is an important component of genome. Retrotransposons can be divided into five
types,the LTR retrotransposons,an important subclass of transposable elements,are well suited for com-
putational identification,as they contain two long terminal repeats (L TRs) and features such as PBS,PPT,
GAG and POL open reading frames, TSD. Recent research indicated that methylation of LTR retrotranspo-
son and environments seemed to be affecting the jump of retrotransposons. Retrotransposons could be in-
hibited by high degree of DNA methylation and activated by environments, which influence the function of
surrounding genes. The characteristics of LTR retrotransposons, such as ubiquitous distribution,abundant
copy number and insertional polymorphism in plant species,provide an excellent basis for the development
of molecular markers,e. g. ,RBIP,SSAP,IRAP,REMAP. In this review,we summarize the recent progress
about the types and structures of retrotransposons, inhabitation and activation of LTR retrotransposons
and their computational identification, molecular marker development.
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Bl (INT) (0 5% 5% il (RT) AR ME A% IR B (RHD 5 (4)
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NA 1y 3" 3 7 #b 1) 51 4 45 4 L 5 (primer binding
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HE S (RNA MG RO s m 5 — 25 (O 18
3'LTR 1y & 4 0 & & 4 £ B ¥ J7 41 (polypurine
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Table 1  The classification and structure of retrotransposons
432 Classification
4ty EHITS 225 ik
A NI Structure TSD Reference
Order Subfamily
K i T K Copia ~[GAGH{AP]-INT][RT][RHT]~ 16 .
DIRS DIRS —[GAG]-[AP|-[RT|-[RH]-[ YR« 0 [15-16]
PLE Penelope —[RT|-[EN]— £ 715 Variable [17]
N _ _ . aiy o
KB T P ] L1 ORF1|-|APE %75 Variable o]
LINE I ——|ORF1]-[APE}-[RT|-[RH|— %75 Variable )
h - - ]— i ATis o
5 B T B2 (RNA OO0 %75 Variable .
SINE 7SL RNA —O-0— £ 7% Variable
W 2H 21 PR M. — KRMEBELEFI ;<. Ko EEZ P . i R T —— B IX ; AP. KA QR E A : APE. &

W 4 A2 TR 9 V) 1 s ENL B PR N VD s GAG. GAG JF i 35 HE s INT. B 4 i s RH. AZ W% MR B RT. 3004 S 5 YR, W PR AL Al .

Note: Referencel?!) with modification. =. Long terminal repeat; —<—. Terminal inverted repeats; []. Diagnostic feature in non-coding re-

gion;

. Non-coding region; AP. Aspartic proteinase; APE. Apurinic endonuclease; EN. Endonuclease; GAG. GAG open reading frame; INT.

Integrase; RH. RNase H;RT. Reverse transcriptase; YR. Tyrosine recombinase.



2356 odu oW ¥ i 33 4%
JL K Z4IDNA I K 4IDNA
Copia  SSnOmEeDNA |5 s 5141 GAGIF M B HE | POLJF B i AE | 3/ KA 3 7 527 ) | Genome DNA
5’ LTR GAG ORF APINTRT RH 3’ LTR
AT ER 514 54 A Z WS 7 ) HEAT RS
TSD PBS PPT TSD
L FI4IDNA e R 4IDNA
Gypsy Genome DNA | 57 & 5% 3t 7 43 /7 41 GAGH K B ME | POLIF ML ME | 37 KA i #5741 | Genome DNA
i 5’ LTR GAG ORF APINT RTRH 3’ LTR
L ER IR/ e Ve Z S8 7 41 HEAT S
TSD PBS PPT TSD

1 LTR W F 5 8T Copia Fl Gypsy 1) 55 ¥) F5RAE
AP. RA G IR E A B INT. #8458 ; RT. 06 56 S | s RH. B W5 R B ;s ORE. JF ik &l 32 4E

Fig. 1

Structure characteristics of LTR retrotransposons

AP. Asparticproteinase; INT. Integrase; RT. Reverse transcriptase; RH. RNase H; ORF. Open reading frame
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HOETE A & . T 16 VomybAl 3L )5 o)
T IXHEAE A T KBS 10 422 bp 1Y F e 55 A
T Ty3-gypsy 520 Tz KL ) Fak , Wi 8 16 75 1
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The LTR generally serves as the retrotransposon priming
site. (a) SSAP. Amplification is carried out from genomic DNA
cut with two restriction enzymes (R1 and R2) ,containing a
retrotransposon and ligated to an adapter (R2). ( b) IRAP. The
second priming site is also a retrotransposon. (¢) REMAP.
Amplification takes place between a microsatellite domain
(SSR) and a retrotransposon. (d) RBIP. Full sites are scored
by amplification between a primer in the flanking genomic
DNA and a retrotransposon primer
it b s — b B T e SR e R AR ARG I I 1T A
ARG B HF S S R AR T R 2, $5
NEFEE . mES I A ZEEGY . Bl
T LTR Je ¥ 5 % 5 I8 & 09 brac (B 2) . (4G
SSAP ( sequence-specific amplification polymor-
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FH 40 DNA 47 XU Y] (Mse [ /Pst 1 5% Mse [ /
EcoR 1) BV JE i bXF 4 3k 51 9 3 B 1 . i
WY 51— He Sk 519 55— 5| W) s
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TEA IR T o 1) 426 3k 51 i AT 73 . D3 8, SSAP
BT O LTR ¥ 1 7 9 BB R B 1 2 850
I AFLP ¥ £ 5, Ellis &2 ¥ 5 & Tyl-copia
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