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Effects of Magnesium Chloride Pretreatment on the Plasma
Membrane H*-ATPase Activity and Nitrate Absorption
Efficiency of Canna generalis in Farmland Wastewater

LIU Ang',WU Wenwei’,ZHAO Lei* ,CHEN Qi',BAI Xiaohua®,CHEN Limei'"

(1 Biotechnology Research Center, College of Life Science and Technology.Chenggong Campus, Kunming University of Science

and Technology, Kunming 650500, China;2 Yunnan Environmental Science Institute, Kunming 650034, China)

Abstract: In this study, the seedlings of the wetland emergent plant, Canna generalis Bailey, were used as
the experimental materials. Pretreatment of the seedlings with 150 pmol/L MgCl, was conducted under the
greenhouse conditions for 12 h. Subseqently, treatment of the seedlings with farmland wastewater contai-
ning 10 mg/L nitrate (NO,; -N) was performed to investigate the effects of MgCl, pretreatment on the ni-
trate absorption efficiency,the plasma membrane H"-ATPase and H' pump activities and the interaction
of plasma membrane H™-ATPase and 14-3-3 protein of C. generalis in farmland wastewater. The results
showed that pretreatment of 150 pmol/L MgCl, for 12 h increased the nitrate absorption efficiency of C.
generalis Bailey in farmland wastewater by 11%. Compared with those in the roots of the plants without
MgCl, pretreatment,both the plasma membrane H" -ATPase and H' pump activities in C. generalis roots
with MgCl, pretreatment were significantly elevated. MgCl, pretreatment also enhanced plasma membrane
H*-ATPase and 14-3-3 protein interaction in C. generalis roots. These results suggested that MgCl, pre-

treatment increased the Plasma membrane H™-ATPase activity by enhancing its interaction with 14-3-3
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protein, thereby increasing the nitrate absorption efficiency of C. generalis in farmland wastewater.

Key words: Canna generalis ; MgCl, ; farmland wastewater;nitrate; plasma membrane H™-ATPase
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Fig. 1 The removal efficiency of nitrate from farm
wastewater by the C. generalis with (YC)
and without (CK) MgCl, pretreatment
The different letters on the figure indicate significant
difference between treatment and control at 0. 05 level;

The bar line on the map shows the standard deviation(n=3)
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Fig. 2 Plasma membrane (PM) H" -ATPase activity (A) and H™ pumping activity (B) in the roots

of YC and CK of C. generalis treated with farmland wastewater

The different normal letters in the same treatment indicate significant difference among treatment time at 0. 05 level,

while the * indicate significant difference between YC and CK during the same time at 0. 05 level
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