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Research Progress of Stress-induced Promoter in Higher Plant

WEN Tianlong, LIU Xuemei,JI Yaping, YU Jianing”

(Shaanxi Normal University, College of Life Science,Xi’an 710119, China)

Abstract: Adversity stress seriously affect growth and development of plant, even reduce crop yields. In

most transgenic engineering, constitutive promoters are being used to drive the expression of exogenous

genes. Recent years, constitutive promoters have been identified to improve the resistance of transgenic

plants to abiotic stress, but over-expression of exogenous genes driven by constitutive promoters could

cause growth stunted and yield reduction of transgenic plants. Inducible promoters only drive exogenous

genes to express in special conditions,such as abiotic stress and environment inducible. This paper reviews

the types and functions of inducible promoters. The prospect of stress-induced promoters was also dis-

cussed.
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FIRE SRR T A S AUS 3 T A Y R B
SRS T BATERE R TA BERNTSR
FEIE S Al TEA )R RE 1R B BOR AR R B R L 5 %
8 BRI 23R DR IR W) E 5 AR 4 5 2 W38 iR B
Jo o HE DR S 1 20K . X RE AN AU 23 3 SR )
A PN 5% U5 R TR B, SCORT B A W LE B A AT Y
Ptk

EFER . MG TP ORI T A a5 Al
AT (R D Hi Pogcsgz — DA T 2%
)8 3l 1 W] BK Bl 28 A G Y 32 IR I R
B Pears i 8 FAEARAE Y vh F B0 T 5 00 B 119
FEpEN T, Delatorre 25 K T Psars 9K 3l 4 55 S
R B rh GUS 19 3R B 06 Pk, 45 R B8 % Paarg 10

®1 BEEYPEFSEBRHTHE

GUS Wy 10 5576 T 5 40 BE 2 4 7, JF £ Wit |
GUS &3k & 3 . 078 1IE % £ KW 4 ik B v
GUS 1G5 Ak U B T B 2 A (1 0 v
Poarc )it 8 F 76 T 5038 T 936 M 8 & . OsABA2
S G At K B IR S AR I 1) S5 B Rai 455 ] OsA-
BA2 LG 30 TRl A GUS 145 56 P 0 12 35 3k 24k
ALK ARV B B 550 T % OsABA2::GUS
HR&R T OsABA2 52X 5 3 38 8 (1 GUS 16 14 L Xf
AR 2. M EUK A S . % H OsABA2::GUS
MR e T 5403 6 d J§ GUS Rik &
AN AR A 5 A% LSS 8 R GUS %Kik
SRR B 5 T 7E B L PR P AR EB GUS T P 7
55 8 KA SR BG L & X BR Y 8 4% L & B OsABA 2 5
IR g o Py o

Table 1 The types of inducible promoters in higher plant with cis-elements and their application
JH 3 F SR AE F o6 LIP3 i
Promoter Cis-acting element Origin of species Application
Psark CAAT-box,GT1-box . MYC ;Télzzl}m/m wulgaris Z 2 497% G0 13 1) Response to drought and other stress factors
OsABA2 MYBR.MYCR. ABRE il ) ) Z3 ABA, #hf1 T 2% 5 m L) Response to ABA, salt and
Oryza sativa Japonica drought
corls TATA-box. ABREs.DRE/CRT EVNERAS KR %5 % S mi i 011 Response to hypothermia and other stress
’ e o Y Arabidopsis factors
RFP1 TATA-box.CAAT-box. TCA . HSE o ] B A A Xt e T % % S m ) Response to high temperature and other
A R Vitis pseudoreticulata stress factors
TATA-box, CAAT-box, CAAAAA,  iTTH % e NAC] & EL16517] Rocnone .C
BADH CANNTG Suaeda liaotungensis K. 5% NaCl % ? Response to NaCl
Rabl6A ABRE, CE-like ﬂjﬁca rice Pokkali it kb &5 G 13 1190 Response to salt and other stress factors
GhCesAd AuxRE il 3t A5 % NAA %S H% ABA, T 2M GA B#i%E S Strongly in-
) Gossypium hirsutum duced by NAA, but slightly induced by the ABA,drought and GA
. . A AT . PEIEEA 5% NaCl, H # 2, PEG-6000SA, ABA #I JA % 5257 Induced by
PsPR10 TATA-box,CAAT-box. Dof . E-box Pinus strobus NaCl, mannitol, PEG-6000SA, ABA and JA
RD29 DRE.MYB EiVREEpiN T2 B %% 52527 Induced by drought.salt and other stress
© N Arabidopsis factors
GHSP26 CAAT-box, HSEs,CBF, ABRE E‘%{f/ﬁﬁfgmwev corevisiae Z T 5 44% S 18] Induced by drought and other stress factors
o HA R R, 3 T 5808 %35 5w 52000 Have oxidation
SWPA2 GCN-4 ,AP-1, HSTF,SP-1,G-box I pomoea batatas characteristics and induced by drought, hypothermia and other stress
) factors
CBF CRT/DRE.MYC EVNTERAS X TR 457 S i 31-33] Response to hypothermia and other stress
e N ’ Arabidopsis factors
ReHSPI7.8  TATA-box,HSE,LTR ERE RE X #536 % ¥ % 1 1) Response to high temperature and other
Rosa chinensis stress factors
HAHB4 ABRE. W-box li) H %% X ABANaCl I F 5 % ) 38 7 5 1 i 25%%] Response to ABA,
N Helianthus annuus NaCl, drought and other stress factors
K ZH B Rz 3L PEG, AL SR JE % LK 1 R A ABA 1 38 B35
DREBIB DRE/C-repeat Or H wati 5037381 Strongly induced by mannitol, salt, PEG, methyl viologen.
yza satiua hypothermia, salicylic acid and ABA
ki £ NaCl AR T 52 M8 5% 05 F 1 i85 46 7 B8 F F 9] Up-
RGA1(D ABRE Orvea sativa regulated by NaCl, hypothermia and drought stress; Down-regulated
YR by high temperature
1 AL L)
AdGPP TATA-box,CAAT-box ﬁdﬂiﬁzm deliciosa ZAEA YA FE S EH0) Up-regulated by abiotic stress
_ o
. o - ~ T R [41]
TsVP1 G-box,box-[l . TC-rich Thellungiella halophila EyBER7 25 Induced by salt
H v
OsLEA3-1 ABRE £ Z #2455 02 Induced by high salt and drought

Oryza sativa
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corlSa FE T 3 J& WAL RS I 43 85 10 ok L FE
R A I 3 B R S 2R 1 — A LR Y 15 3 A S
ShF R AR R [ AR ARG R 0 5 10 A e Y R
[R5, corl5a JR 8 F X 38, (— 305~ 478 bp) 47
TR T . Wang 20V 400 T GUS BlA
COR 15a J&i )+ W9 5% 3 K bR & 43 0 A6 IR (22 °C ~
4 CHFIBHI(28 C~22 Caf 22 ‘C~16 CYEMT
GUS M #£B 0. 45 R woR 28 C~22 CRy bt
R AL B GUS e By KAk B i 22 °C ~16 °C
Ve E0 A0 R LA TR AL B GUS J PR e k18 H.55 .

WA A R T HEAE e B A, — 2 TR AT
HiHS #iK., RFP(RING FINGER PROTEIN) A
Bz F RS RE AR e 1 Al A 9 e
Prij T E B AN, Y SRS T b E AR
# (Vitis pseudoreticulata )VpRFP1 Jg 3 1 X 5 E
FRIWE L S K 5 A 5 VpREP1-GUS il & 5 R 1) 1 %
MR 43 0 AT AR R (4 °C) A i (40 OO AR FE, I
AL H B, VPRFPL J5 8 F 3K 8 i) GUS {5 N
Z A 25 5 N0 iR A B, VARFPL J3 3
WK GUS WEPEE NS5 8 A,

R W05 RS B 1 0] DURS B AR W s AR K AR
P4 . XA 5 5 S 3 R B AE R R
Horp— 28 )3 3 - n] W 3 $ e e B DRURE P o R 38 Y
MRy . ML T 0 % (Suaeda liaotungensis K. ) W4y
5 1Y) G A SR BRRE I U 1) BADH JE AL 32 R
A F kY, Zhang VY &R IF T 5 A4
BADH 35 8T 88 4k (—1 993 bp. —1 466
bp,—1 084 bp,—573 bp F1—300 bp) , fili A i 4 Fk
GUS Ja % N B, TS [ vk BE NaCl ib B 4% JE
BB 48 h )5 .8 & GUS 41214k 2= Y 53 By
Ao 6w o Mk O, Wos M R GUS W6 S
NaCl f) ¢ B B IE He . 5 0 B8 L 4, @l & — 300 bp
Ji Bl F A Y B% R TR AE ) 7E 400 mmol/L Y
NaCl 43, GUS 3§ P34 5 6. 3 £ . WY A 3
F AR (—300~+62 bp) A = 2 1y I AE I oT
a5k NaCl 75 30958 3 F . Rab % 502
AKFEH 43 Ok T o Rab16A S i B 7K 25
. J8 T8 4 LEA JERZEWR. % ABA %S94
B ABA 1R BT (ABRE) FlLEE 4 J61F CE-like
JP 8 il B — 2 i . RoyChoudhu-
ry SN AL 4 HER AT B 5 ALK Rab16A J5 3T
IXZ 1) Rab16A ¥ B MHF 3£ 153 1 T, AQFE B AH

WL TE B L ABA Ml PEG B S0 & 1EF 5 5L kg
Yint i Rabl6A 2 (AL B B B 7). 0 8 i
i 22 IR R 22 5 e At B L 5 A A R R A B X
b (AT 27 14 B B

BRULZ A R 2 3 RS W E 8h 7. - 2F
A% A R R B T (GhCesAd) & M Bl b AR
(Gossypium hirsutum) P B H B — N2 K N
1482 bp WA 8h . B F b GhCesAd Ji 5
TR MRS T RE . AR 2
Y1 & i B e (AuxRE) J& i TGTCTC 41 Fl &
(9B 18 )5 51 GAGACA 4% . Wu 252748 GhC-
esA4 Ji Bl 3 B R R B GUS BB LT
ELILPIAR 2 (pGhCesA4::GUS) , RIG¥HEK 3
(T AR HG B DR IR R 3R A7 45 38 b 38, & B NAA
AhFRE GUS 3% 1 bt B A B A 5 1. 86 £, SR
ABA T 581 GA AR BB B GUS 3,
XF NAA LR B i) F0 5 2 B 5% & B GUS 3 1 7
1 pmol/L NAA 4b ¥ J5 3% #3476 9 h 35 8] 35 5
KO AT AZERE R 24 b HR7ERA NAA b
B FR RN @R AR 2 4% . PsPR10 J5 3 FJ& M E
¥ (Pinus strobus) " 43 25 11 1 . 3% 4 A A 7E AR Hh if5
SFKP Xu P g T — &% PsPR10(1 681
bp) i 3 F 5 iR AR AL G GUS R4 LR L 5 AR
BT T AR A YR M R P796(— 796~ +69)
XA A S R B . 45 R WoR, A NaCl, | # B A
PEG-6000 b ¥ #5 P796-GUS 4tk 9 AR 3B . GUS i
PEH S 0 B 3 4%, 1T SAVABA F1 JA Ab 3R GUS
TR

R WE g S R R W38 i R AL 7 R R
IS A Y A K A TIRE, A S &
PERUR RN SR8 2 T i SRR Y & F T 2 5 .
KRR IR A W5 5 H GUS & eGFP J5
i 3 AR ) 22 TR AR L FHARFE TR A 5 10 7 5 ) L
b 0 I 8 i DXL W A B D DR e o iR AT —
F 5 (1 o 3e Ak B F 5E6F A A 30 0 ) R L. —
PR DL T JH 36 75 5 R Bl R LA e R 22 R A L R
BB R T R R S 0 0 A R Y
MR . XA R S AN RS 8h AR HAE R R AL A
B 10 1 2 B0 AR OG5 R A TR K
VEF JC 77 285 45 AN [l 14 i 20 FH B 7 of g ol 2 1
S, DRI 9 4% 26 o 300 375 5 R0 X A A e 4 R
AR R E T A BY T AT b A BT b 38 i
e 2 F A AL
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2 AR oA AR

2.1 ImX{ERATH

BRAZo0 i dh F40 5 2 R 8 7 LR A5 1R 2w
AN R 38 A T e . R L 4 B 3 e
i = A oc #F £ % 45 DRE, MYB, MYC, ABREs,
HSEs,LTR #l GCC-box 45 (3 2), DRE Joff42 1994
4 Yamaguchi-Shinozaki 25 8 & B, H A% 0 FF 51
b TACCGACAT 16T 5 . m #h AR AL P45 F T 1
IR W L K 265k, ABREs J& 1989 4E Marcotte
GRG0 PR ACGT, LA 7EMK T ABA
(9358 PR e 38 TR AE AT, AT 5 bZIP 2856 Sk H 1454 1A
TR R FRE RS HEY PR, HSE — %
fii T TATA -box L. Z 5HH M REEE. Hi
P14 336 M 37 G A 24 T 5 R N ) ik TR 4 AL ()
LAY FTE o B T B e B T 9 E STy L DA
PAL P 80 R 4 W L T B AN B AR D
e A B AR R /AN PG B (SHSPs) 7E {47
Bra & B B A E] . 7R sHSP26 )3
gl CAAT -box i & #H ot/ (HSEs) , CAAT -box
JGF 7E % 5 Wl % B IR HSEs /9 7 ™ . Zahur
&L51 M\ MR AE (Gossy pium arboreum ) 3 A 240 DNA 5" 4
X 4y 8§ T GHSP26 jg 3 ¥ J¥ %] (PGHSP26,
—2 813 bp) ,ili i PLACE {44347 T PGHSP26 J3
Bl Bz 25 R B A 5 1 0 VR O s A
T =76 bp &by MYB &5 G0 55 T 5 Haa A 56, M
A~ ABA 1R B TG F 25 B P (ACGTG) 5 T 5 ik A
Iy BE R 3RGK A OC, IS T 5w B ot #F CBF #1
ABRE 43 5457 T — 898 bp F1 — 736 bp, fii T — 582
bp MRE-like FFF](TGCAGGO) M # & )8 15 .

RcHSP17. 8 J& sHSPs K% (1 3 2 F » M\ % 1%
JEAEY ) ZEh 4y B AR B B 2 > sHSP fR A7 45
P30 FEA A sHSPs 3 36 35 AT A3 5 % i A4
Wyl iE B9 it 52 P . Zhang 2517 ] PlantCARE %k
50 #r 7 ReHSP17. 8 )3 gl DX i XA I oT 14
RcHSP17. 8 J3 8 F7E—26 bp 5| —32 bp i K Bt
Z I & 4 TATA-box (TATAAAT), 4 % #4 #%
(HSE) K (LTR) fil 2, 4% CERE) W Ji7. f4 )i 2 A F
Jei4,3 4~ HSE i F —41 bp. — 87 bp fl—821 bp
fb.2 A LTR i F — 127 bp f1 — 692 bp &b, ¥
RcHSP17. 8 BI% & Ih % 551 il 1 910 bp )7 51
S A A dh F AR LS A B GUS 5 5L 1L 3 )
WIFGIF L 45 R s GUS 4L BLTE A W) Fr A 11
fE LRSS g A, IR

UG IF L PR TR S T2 K H 8 FIksh 1) GUS
Fe b o B HR AE A AR AR W W 3 b IR A A A F
GUS ¥, #m ks 3R RecHSP17. 8 () — 178
bp F =771 bp X IR T 8h -0 N = T 26 55 1
2.2 RAXEAEF

T 5 DR )i 3l 5 A B 22 i 0 =X A
TCA o 10 HAE e S KT 1 TR 4 S 5 R AR IR T A
HAREFSEIAY (3% 2) 8 o A T A R R R A 3R
ik HAHY BB S IE N B A 2 AR AR K A . R LA
SR F SR VARG RS S 5 15
TR i R AR R B R R R A B EE S APZ/
EREBP.MYB.bZIP,WRKY 1 NAC 2% 5 4~ %K %,
Horp B S R B AE (bZIP) e R T 5 5 60 It
O R 8 P AERKET ESHES IR EE .
A AN AR A P 1 3 1 DA S ABA BB S A R
51 BN 5 T 54 W B T A 45 A 5% Sk L F (DREB) 1]
Fr 5 U I 45 A T R BT 4 (DRED L i 1 2 5
BT AR 5 1A% 34, PRI Ui 45 e I 5 I ) 0k L 4R
o HEL A A 330 5 4% T I 3 P R TR 37 BE T

DREB 2 A] 5§ 5 4 1 51 9 45 & DRE it =X 75
T R = /E B F. DREBIA/B/C # DREB2
KL SEHF 2 5K T ABA IRIR. TRk
£5 55 W38 M 1 3% 4% 5 T DREB1D/CBF4 | 2 5 4§
ABA B 5 a8 g £R 55 0 N iR A7

CBF J& K P 35 3 1 % s IR - g Jr
RD29A Ji 8 F o] 4 + 5. @ b A G 5
RD29A B8l F &4 2 AT Fm f o/ (DRE) , 78
BRE LR PRI EZWER. BRxHTF
DREBIA 0] 5 DRE # B E F 5 5 it Wy 18 56 5 3
B FE RD29A 5 F . O 1 BRAGAE 2B 4 W 3e 1)
S, R A M T ) 32 T e N R T B
Yamaguchi-Shinozaki 2" % 8 RD29A & 1 49
bp B DRE(TACCGACAT) , 5 5 H1 & 5 19 W 3e0
A K XA TTFR A [F] 1) 8 5 51 1(DR1) . DR1 &
RD29A W i) T R i R K P M 4% T . Li
U AR CaMV 35S Ji 8 F fl RD29 )i 8l
T B8R 8 TaEXPB23 3 M % {47 5, 355 18
TaEXPB23 % He PR A IE 8 A RN L HAE K
SR KA B0 R AR A R PR T AR A
B R B AR R A A . SR L RD29 1 TaEX-
PB2 3% 3 PR 5 EL B A 0 6k T 5 a0 i Az
5. 2 WA 5 R RS B F RD29 n] LAHE & A6 ) 4F
TR 38 W T M. Stockinger 25007 5 i B2 £ B 4
A& HAR S AL I cDNA ST H i IR 43 85 15 31 % 5
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Table 2 Cis-acting elements and their interacting trans-acting factors of inducible promoter in higher plant

I A e 741 AR T Xof [ 368 1) S

Cis-acting element Sequence Trans-acting factor Stress condition
G-box CACGTG HY5.GBF2,PIF3 )t Light
I-box GATAA LeMYBI J6 Light
GAATTC element GAATTC HSF f ik High temperature
HSE AAGAATTTC Hsfs f ik High temperature
W-box (T)(THOTGACCC/T) WRKY T 5 /ABA Drought/ABA
LTRE GGCCGACGT ERF/AP2 &R/ T % Hypothermia/drought
CRT TGGCCGAC CBF &R/ T % Hypothermia/drought
MYC-like CATGTG NAC T8 /15 & /KR / ABA Drought/salt/hypothermia/ ABA
DRE TACCGACAT ERF/AP2,DREB {5/ T 5% Hypothermia/drought
MYBR TGGTTAG MYB T 5/ E L /iR / ABA Drought/salt/hypothermia/ ABA
ABRE ACGTGGC bZIP ABA/ & /T 5 ABA/salt/drought
CE1 TGCCACCGG ERF/AP2 ABA
CE3 ACGCGTGCCTC ERF/AP2 ABA
MYCR CACATG bHLH ABA/+ 5 /K5 ABA/drought/hypothermia
GCC-box TAGAAGCCGCC ERF Z ¥ Ethylene

[K¥ CBF1 (Rl DREB1B %K) ,CBF1 2 5. 4% Il 5
R DL B 485 1 A~ DRESZEAS N F.5F 14
APZ X, B XS0 — > 60 2R 41 LAY DNA
S5 E 8 HARSE I 45 6 87 51 2 A/GCCGAC, APZ
DAL 55 S 1 B L RE S D2 B AT 45 5 DRE/Core-
peat JC {1 19 BE 17 . Gutha 2557 BF 58 T /K 4
(Oryza sativa ssp. indica)OsDREB1B % [H )3 8T
1E5 B 0 CE AR KR  ABA AR IR B a R
DREBIB =4y ) VE T - 45 SR W75 i 5k DX R 7 H 6
AR HTAY 25 0T AT LA SGE R 7 & R ARG IR Y
R PER 2. 2- ZOR B 1- SR SE R B CDPPHD Mt A
HI3E9E . DRE fl CRT JofF#66 & 7 #% 0 8 31
CCGAC BT i A7 7L TR v 4k 21 52 30 ey
MER B3 F9, 5 CRT/DRE (C-repeat/de-
hydration responsive element) JG /4, DREB %% 5 [A
TAEW A 255 08 3 7 b 9 CRT/DRE i
VEI TR S 4 T LA VF 2 30 5515 5 BE D /Y
IR DT H AR 40 % 30 455 Joik 30 1) T 52 )

AT A O B AT 58 2R WL AR S 14 9 o ) 0 3L
o 50 % I Bl 0 S 0 M S, s L SR
WA YE B 2E 5 0T T LR I 4 B Y corlSa
Mcorlsb 5 7. B aaH&H 2 1 CRT/DRE 19
corl5b JAG T EA 1R corlba Ja 3 11 Pk 5
i — 25 30 A R B AR A A S 4 I = A FH T
P s A 32 7 31) 45 2R S 7 0 3L 2] ™ B R 0 U )
TSR . A SRR 3 T SIS )
g1 ERIEAE TR 2R B 5% ik 5 I AE oo

0t TE0 22 10 B 9147 5 R U T 913 5
SICT AR A T . R A B T 5
SA B AT 2 5 5 R 47 B T 2
LD B3 4 A B 0. D 10 4 K T
A7 T ELIGCRC 76 T 0 DU 51 R 3
L 0 S5 A DR 7 15 B 2 B 2
PR A . AT SCHRHRIE 5% PR T (R k0P
UL L B 85 110/ K R A G
= T S TR A TR R O
St . AL P 0155 8.2 1 v T RS 02 47
SUHETT WLAT ST HE 0 RT3 4 Ry e o i
B3 IR ISR IRIE 5 0 it 6 IR
AT S REBF TR I KA

3 EAFHEYME SRS SR
7 ik

o S R Y W aE 5 S B Bh TR B SE  ik
BLA W5 B AT 5 T L B A Ak o A LB 2k 5%
AR BT RS AE L BE I B B R (EMSAD | i B B %
LHARSE AR — S (05T 7 ik T Bh
T
3.1 E¥ERESTERN

AP AE B2 BT S B B TS S B T iR
M s, R FIpsle, gt EwER
205 R I BT 90 AT 0 A6 B 0 R 23 BT S
75 Rl Be & A R AR e . H AR R A )
Jed Bl 3500 1) A O BN FE AR 1 R IR A EPD Ceu-
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karyotic promoter database)™  TRRD (transcrip-
tion regulatory regions database)™™ | TRANSFAC
(transcriptional regulation from patterns to pro-
files)") [ PLACE (plant cis-acting regulatory DNA
elements)P" #1 PlantCARE (plant cis-acting regu-
latory elements)H 5 ., H# PLACE Fi Plant-
CARE g7 Aty DNA 51 F i A F oo %
R AR o ] 00 5 i PR T A ] e A ) 2 8
RS = hi e A OE L VA DA S DS

AR SR TS AIL T A O s T A O IR 4
DNA J7 81 {1 1 ¥ 35 7 FLORSF P 81 . Ma 8650 42 1
T AT R P D RS 8 9 L X Y Motif
Indexer J7 ¥, B & S A oF 8oy I 3, K R B 8-
mer 2 A 12-mer ZERAL IR A AATE . 7] N T 0 A7
PRI B RS s F M e R AW EE S H T
WF5EBE R ZH DNA [ 3] 45 77 51 FH 1) 6 3 366 PR 19
PP
3.2 REARTMARTESH

TEW 7€ K — Bt DNA B8 R J8 3 1 Z )5, il 5
I 5 it Ak L3 g e 2 0 ] el 2k 4 — R B
)T 7 51 e 2R 1 AL A 5 SR I A T A R O e A
HE DR 0 TR A4 O B AL A ) AR 908 e A A e v 4
FEH ) B B M a3 T oo IR . W]
B 4R A S R -7 2R M IR 19 1 1§ (B-glucuronidase,
GUS) .4 & 4 B il (chloramphenical acetyl
transferase, CAT) . %¢ Y6 & Fiff (luciferase, LUC) fll 4%
£4,5¢ Y6 35 [ (green fluorescent protein, GFP),

FRAR ST WE R 87 1Y B R P 8
FHBY T ¥ s — M ) ] % e 4 A\ 9 728 a7 2 BIR 1l
PEBGEUI BRI — 55 € 3 8 7 oo fF O 38 1 2 4 A sk
KA Bl 1 R AR R 8 e E TR R S E . T TR
NG B 7 W O O %, i TATA HE 1
CAAT HESEHR L1 JH L T s or i 3]
3.3 BRELSWN

2 A0 5 B DR AR A0 b LA R B N R A
RERFER R 5] A g M8y 48 DNA FlfE
MG 1K DNA JEAR R A8 5, X2 DNA —fig
Bl A HE A LSS 12 h Nl AT DAERGR I Hr2L 24 80
h ity o BEm AL B 2K — BUR 8 717 9 S5 k&
B PRIl 5 4 A R A, — B o R A A SR
ACHEL I A7 4 5 R 0 23 A G 0. ket 2 fk
I3 S — A B 1 B S sh i e R T
Tiik JEAREUWIR s T2 1 B . BN
A 53 A T ARG k2K 9 708 R AL R AE

3.4 BRECPEH B AR T DNase 1 B il 53 47 ik

Bt i BH i 52 36 (electrophoretic mobility shift
assay » EMSA) J& — Fit fi] B o A6 0 25 13 50 15 4% 5%
DNA JF 9045 4 9 F RS 0] TR S 58 ) 8+
HEARMEA O L E R 3 1 %0 I AE
Foetr . HRUER A - A Bk vk b, B T nAE
/Ny DNA R Bl s & 7 A B DNA K
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