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Clone and Expression Analysis of AGO Genes from Zea mays L.
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Abstract ; The expression profiles of 6 AGO genes(AGO1,AGO2,AGO4 ,AGO5,AGO7 and AGO10)in differ-
ent tissues and developmental stages of maize seedling(Zea mays L. inbred line, ‘Chang 7-2”) were analyzed
by the method of real-time quantitative PCR. Results showed that: (1) AGO1,AGO2,AGO4 and AGO7 were

accumulated more in the seedlings at the 5th day after maize seed germination than that at the 8th day,ex-

hibiting more expression in dividing cells and newborn tissues, which indicated that AGO1, AGO2, AGO4

and AGO7 might play roles in meristem of maize seedling at the early stage after germination. (2) AGO5 and

AGO10 were only expressed in leaves and shoot tips, AGO5 mainly expressed in the newborn leaves and

shoot tip at the 8th day after germination, while AGO10 showed migration in leaves during development.
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Table 1 Primer sets for real-time PCR
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Fig.1 RT-PCR results of amplification of six AGO genes

M. DL2000;1~7 represented the amplification results of
AGO1,AGO2,AGO4L, AGO5 ,AGOT7 ,AGO10 and actin
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Fig. 2 Alignment results of AGO7 (A) and AGO10 (B) between Chang 7-2 and B73
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