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Effect of Exogenous Nitric Oxide on Root Growth and Antioxidant

System in Rice Seedlings under Aluminum Toxicity
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Abstract ; To verify the physiological mechanism of exogenous nitric oxide (NO) on ameliorating Al toxicity
in rice, we planted cultivar ‘Zhefu 802’ in hydroponic solutions,and then detected the reactive oxygen spe-
cies and antioxidase activity. The results showed that; (1) 0. 05 mmol/L Al significantly inhibited root
growth,caused Al and callose accumulation in root tips,and increased the contents of reactive hydrogen
peroxide (H,0,) and superoxide anion freebase (O; ). Pretreatment the rice seedlings were applied with
0.1 mmol/L sodium nitroprusside in the presence of Al (SNP,NO donor) increased relative root elongation
and NO content by 34. 96% and 12. 86 %, respectively, reduced Al and callose contents by 83. 04% and
31.93% ,indicating that NO partially alleviated Al toxicity which might be caused by the rising levels of en-
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dogenous NO. (2) The exogenous NO decreased H,O, and O, contents by 15. 43% and 12.93%, respec-

tively,and significantly enhanced SOD,POD and CAT activities in rice root tips. In contrary,the ameliora-

ting effect was reversed by the addition of NO scavenger (carboxy-PTIO,cPTIO) in the presence of Al.

These results showed that exogenous NO played an important role in maintaining cell membrane structure

stability by regulating reactive oxygen metabolism under Al toxicity, thereby reducing the Al damage to

rice roots.
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Fig. 1 Effect of exogenous NO on relative root

elongation of rice root under Al toxicity
CK. Control; Al. 0. 05 mmol/L AICl; ;SNP. 0. 1 mmol/L. SNP;
cPTIO. 0. 075 mmol/L carboxy-PTIO; Different lowercase letters
above bars indicate difference at 0. 05 significance
level (P<C0. 05). The same as below
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