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Research Progress on BAK1 of a Receptor Kinase

TIAN Rong,YANG Yong, WANG Xiaofeng”
(College of Horticulture & State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A& F University, Yangling.
Shaanxi 712100, China)

Abstract: Receptor kinse BAK1 (BRI-Associated Kinase 1) has been highlighted among all of 610 RKs of
Arabidopsis thaliana because it played different independent roles in multiple signal transduction path-
ways. BAK1 is a typical leucine-rich repeats receptor kinase(LRR-RK) that belongs to the LRR-RK ]| fam-
ily and structurely composed with three parts named extracellular domain, transmembrane domain and in-
tracellular kinase domain. BAK1 was firstly identified as a dual co-receptor of BRI1 and FL.S2, mediating
BR signaling and pathogen-associated molecular pattern (PAMP) triggered immunity (PTID) in plant, re-
spectively. Additionally,a set of new BAKI- interaction protein components,such as EFR, AvrPto, PEPR
1/2,PUBI13,BIR1,BON1, have been uncovered recently. This work has comprehensively reviewed the re-
cently research progress on the molecular structure of BAKI, function-redundance of SERK, the role of
BAKI1 involving in BR signaling and PTI,as well as cell death,and expectively to clarify the research ques-
tions presently faced.
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nase) . H A0 35| 5 5 35 K b P 95 G 24 A A
WH9E & B BAKT &l 38 R %Z {k BRI1 Y 352 14,
BAKI1 5 BRIl fEMR R W3 TR &) . i
T Tl R A VAT A 1 OB O P O B A S ) R RS
o B g R UUE M O ik & 3 BAKL 5
FLS2 feIE BB & ¥ 2 5 A B 1 58 R %
NS IF B AW T8 B T 4 T HE R AR flg22
M S5 . AR M4k & B BAKL, 52 3h & (i
AvrPto 1 AvrPtoB fHH./E 1. J8 2l 8 9 1) 9 Dt T4
Bl S WY s 5 BIRL 1A B i) 8 45 4 40 40 i SE
T3 5 BONT B AR #4080 T 15 5 A 4 A4 K fn
ifsET-" s 5 BIK] &z % % #: 8 PUB12 . PUBI3
AR CELAE 0 R A o R G N . R R
BAKI & —/Z YR8 Z AR I A B A& M Z R D) fg
MM L BAKL RO TE R T — A BAE M 4%, & 45
HHEAE I RE SR A K R KRRy . B
Hi» BAKI 7E %15 538 #1915 502 el 43 0. 5 %
153 AR5 FHLH AR R L TR BAKL R H#A4E
FH 53 F- DL A 90 10 26 K R B e b s 8 4 2
HEEEE X,

1 ZkHE BAKL 4544

FE W) 32 A B (RK s ) S A 0 A P 35 3l A7 7 1) —
R VG 2V 2R S U b iR AR P A G BEAH
Ay AU T I 4 K A4 610 4 RK & R 4 75 (1) %
PR Horh LRR-RKs J& A5 4 b i K — 2 5 1
ARG B LRR-RKs A 16 450015, H
i LRR-RK T A 14 M5, 5 4 SERKs
SRR 40 R B A 2B 8 R . BAKL/SERKS 2y
H—mi ™. H A5 8 o % A LRR-RK 7 il
S BR Z A& BRILWY 43 A 41 24 v 57 i 240 i 36 7 I
S CLVIN, i 2 b 5 ) T 40 i % H ) ER-
ACTM, 2 5 /& W i B b 5 %8 Bl 9% IR 1Y
FLS2M . BAKL J& 3T 47 of A8 4 57 52 VK G BT 50
— AN A T RERF AT S N W AT . BAKL A
AR Y IR T B2 AR 454 L B N s fE 5 Ik (N-ter-
minal signal peptide,SP) . 7% 2 BR $ 5% 45 #4 (leucine
zipper, LZ). 5 4~ LRRs (leucine-rich repeats,
LRRs) . & i & B2 X # (proline-rich region, pro-
rich) . # i X 3% (single-pass transmembrane re-
gion, TM) DL K N 19 22 G 1R/ 95 20 8 7R 11 U g 45
#438% (cytoplasimic serine/threonine kinase domain,
KD) A4 B, A0 1 1 BT 73 o Bl 145 # 3ok 3 2 471 57 Ja 0
SME T 15 T DCORE i A A% 18 2 I L PN R 4

Fa 3l 60 DK A5 5 A 2 R iE . BAKT B i 1A 25 44 19
TIF 5%t RH 2 JR 0k AR g FL T B4R AL T
.

Al BERR T 5 LRI AL SV & BR [F 5%
1) F P T, FEUESE BRID A1 BAKT AHE AR H]
BLHI B, & B BRI1 5 BAK1 B AT 1k 22 (1R / 95 &
T 1 i 2, TR Tl TR A 1 RO 93 0 P & 3 3ot 3 (MS)
SE T e A RO SSRGS . B AT
T4 %8 1y BAKT Jig py St 10 4> 8 1R Ak A 55
WwE 1 A, Hod 6 4~ (S290, T312, T446, T449,
T455 W6 10" ) 7E 14 Py 9 iz Ak . 4 A~ 78 1 41 2 1k
(S286.,T450,S604.S612), BAKI f ik 1k 32 5 &
HETEORE IR (T446 . T449 . T450 ,T455) |, it th %
R T CT Ky 3 AW B2 1k A7 A (S604, W610,
S612), BAKI # % ¥ I (% T455 %f i F BRII
T1049,T455 5% & 19 B BR b 76 H T B A #5 Hh 2
1 R Ry ¥ T455 2878 AR IR AL N = IR Gk A A LA
J& WG P R . R BUR BR AL B R Ak A A3
A58 AR X BAKL {936 PR Bsz 6 B A5 3 A
Thr 28784 Ala(T446 A/ T449A/T450A) J5 1 B 175
PR 233 2%, 7 B B0 0 B IR Ak T BAKT 1 3 il
TG SCHE 2L, BAKL B2 b iX 2L 5% L 5 . 1T AE i
% T BAKL., BAKI # B2k fi s s 28 GE 51 2 T
BAKT 30 I 11 R0 A s DR AT Ak 8 280 1) S 25 0%, i
B BAKT % 57 53 05 IR AL 6 A Bk 1 28 Kk Bk /R
HAEZEREERYY . X —ZK7% BR 55 L&
9% I S RE Y 23 A6 2 7 BRUAS [] ) Wl 1R Ak K P
QR RS L (A e e N EI N ERE T F el R e
B, o FHLIA fr ik — 2P 35 88 . I 4F R AH gk
YoE ) BAKL B — ROV AR K 1 iR, BE
U T-DNA i AR %2 T BAKT fil 2k 2878 {4
bakl-1 Fl bak1-2 1% 58 78 RAE BRI /]N 3 )38 1 S5 4
FEXT BR GO BE FEAR . LT bl 555 I R AL,
Kemmerling 25072 3@ 57 T-DNA AKX E T
BAK1 2845 (& bak1-3 Fl bakl-4 3% 58 25 {4 A AL XF
BR U E AR PTL S 5 B = e plom il AN L&
AT T A KB flg22 kb S bakl-3, bakl-4
TES) W ROS 83 34 AR X A= K B B0 JF |
R B BAKL 5 FLS2 1E flg22 i 5 FREIE 2
G2 5 PR 58 K S g BN s B P I T
Pro DC3000 {2 Y& bakl-3, bakl-4 5% 75 1 Fi ¥k,
bak1-3,bak1-4 25 3 4 ™ & B0 B4, | 0 iF B
BAKT & $l 4 FE T, 3 37 F BR {55, bakl-
5 4 Schwessinger 25723 38 5 1 — 4~ B 2K bakl-
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5(C408Y) R IEH % BR {55 0 PTI {5 5 i %
P H IR Ee R Pro DC3000 J5 2 bak1-5 [ 5l
() e fr-1f1s2 T 55 S8 » B bak1-5 380 F 4% R OF 52
BAKI 7£ PTI {5 5 04 5 . bakl-6 J&H% L Gou
UV RE R — A T-DNA $fi A A5, [l B 1% %8 2%
&% BR A%/, ¥ PTI(pathogen associated mo-
lecular pattern-triggered immunity) {5 5 H i /E
WMANTE A . elg JEAES PO SM E + 4b D122N %848
1) —A AR T 5 BRI 955 26 F0 0y . (#1531
BR {55 #1007 38 3k xh 8 AE A i F oL E —
AR T BAKL A [F {5 53 i b i /E F an s R
BB L T B A L 40 B AR T 45 T i AR S R
Mz 7o

2 BAKI1 5 SERK % HAth A% 53 1)
HEEM
A 40 M IR G & A 2 1R B A B (somatic em-

bryogenesis receptor kinases, SERKs) J& T & = &
TR & 7 5 % 1K T H B (leucine-rich repeat se-
quence receptor kinase, LRR-RK) Z &5 .2,
TEVF 20 A2 B0 8 op oA T S8 00 O 4 A 4 i i
R M T AR E AL A A 200 A i
KR WNBRAE 5 0 A& B R AR T 40 i 58 T 4
B A 52 I ST e IE A S S e A BT

SERKI JE P .t F 58 8 | A 4i i ik fis & A= % D) Al
5, PR A 44 Sk A 40 R G 2 A 6 2 1R R i
fiff (SERK) 3 [, B 5 76 2 A 90 Bl i 6K 7K R
INFEEh S T SERK L 76U I8 o il
G| R T R F) 5 A4~ SERK A, 43 3l & SERK1,
SERK?2. SERK3/BAK1. SERK4/BKK1/BAK7.
SERK5,

SERKI1 2 5 845 1 91 19 IR B & A B e PR 1 1
W 7= A B 5E R IRAURE T serkl 5 serk2 BLRAZfR 5
FAEMEA RV ER HBFRE ERF. M
serklserk2 W SAR AR I /N T W F . SERK1 F
SERK2 & 4 AJ 76 {4 P JE Jo 7] 780 g 78— SR 4, 33 B
SERK1 Fl SERK2 1 2y 4 il 4 5 14 43 £k i 5 v 1
Bl TR KB M Z M RE R EE W 348
SERKI {fi 14 B/ 41 43 b, 3 &7 LC/MALDI-TOF/
MS Je G FL U0 UE 19 5 5 % & 1 SERK1 5 BRIL,
BAK1,KAPP,CDC48A,14-3-3 f# 76 HAE"™ . WF3%
%3 BAK1/SERK3 il SERK1 3t [ % 5 4% BR
{55, f1 BAK] —Ff, 33 %235 SERK1 5} BKK1 #fig
AT bril-5 BRI, BAR bakl TR bk B 5L
HA AT R R T H bak] serk] ZR7AZ 1 BR
AR R AL F A B SRR . A iR, SERK]
M BAK1/SERK3 — i, ifi & J& fil BKK1/SERK4
F ] A 3 % BRAY 0 B, SERK 58 i 53 &6 2 i T

A B €
Feature Position Length(aa) ATG | 5
D Signal peptides 1~26 26 h;kl-2 ’E
- Leucine zipper 27~66 40
bak]1-
(:) Leucine rich-repeat 67~186 120 hgﬂ—(l)
LRR1 67~90 24 eig
bak1-3
LRR2 91~114 24
LRR3 115~138 24
LRR4 139~162 24 @ Ser286 2 Ser290
LRRS 163~186 24 D Thr312
- Proline rich domain 187~222 36 3 Thr 446
bakl-4 @ Thr 449
- Transmembrane domain 223~249 27 @ Thr 450 D Thr 455
: bak1-5
- Juxtamembrane region 250~288 39
(@ Ser 604
. . . @Tyr610 —
' Kinase domain 289~576 288 TAA @Ser612—
B C-terminal domain 577~615 39
K1 BAKI #4514

AL BAKT A [a] 454 XIS X 07 1) 2 226 19 i A5 I X BEIS 2 5 B BAKL 2[R 45 4 18]
XA BAKT 28284 5 C. BAKT 3 [ 45 4 1 B O % % 1R W R AL 102 1

Fig. 1

The structure of receptor-like kinase BAK1

A. The table indicates each region of BAKI and corresponding amino acid position and length;B. The gene structure

of BAK1 and related BAK1 mutants;C. The basic structure of BAK1 and identified phosphorylation sites
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BAKI1 FIH: [ 5 3£ B BKK1(SERK4) , % 5 #
GRS 40 B FE T R . bakl-4 bRR1-1 U ZE
AR EOC T L BOE R, A A RIET.
TE bakl-4 bkk1-1 BU5E7Z v G WL 4 3 40 g 58 1 3 A
[ 224> 5 18T B 5 B A8 A G 35 IR 3R 58 KO- 1 R R
H, O, B R HAE R A B A 55848 F0 bril Jo X
RAK P H R A XA L. XK R BAKL fl
BKKI 7EM ] A KM T BR {5 (49 40 i 5E 12 38 i o
BB TOARMIVE R W BA S AR I RE . I PR K
#F BR A Y AR K s AR SO S T BR 41
M Tt . LG R . BAKT #l SERK G HoAth
A <o NI i B 7 ol L A <l < M= = N (S
BAK1/SERK3,SERK1 fl BKK1/SERK4 7£ BR {5
258 M Pl VE T BAK1/SERKS3 fl BKK1/SERKA4
TEA ML T R AE M . HATX SERKS H#F 58
AR5 A o 2% D 2 A ] K ] 3 4 AN ) ) A= B ) 7
HAVHIE A T FIRAWS

3 BAKI Z5¥A# BR %5

BN RSN Bt /Rl D AR 7B
2R 1970 43 ERE2E 4 Mitchell HISEAL K o1 43
BT B — S B T XA A R T L 2R
iR I S R BRI A A AR B M B0 B
PUavi A5y T HL A AR Y . BRID & F 40
FLREE I 1 o R T 2T I A2 AR S B T
HPIXIE A A 25 4> LRRs, 7255 21 A% 22 4~ LRR
ZIAA —A 70 A SE R 4 B < B 15 (island )7
54, JE ok % SR E BR M5 A XK. bril
AN IR 58 A8 R 2 30 R AR A /0N o 32 DA T K0 i R
L6, Tl ik BAKI GEFB MR R oril AR 1K
MR, itk & 3 BAK1 2 5 4% BR 5%, 3 H
BAKI fE & N 4R BE 5 BRIL JE B8 — R ik, H
TR Y B SR R ST e e, B2
F 5 T-DNA i A% 2 T bakl-1 Fl bakl-2
G LR AR R LT bril 55 %A AK B bR
BN EJE I B8 L IR HLXE BL B SRR B AR, i
— 53l 3 e e T E L E ] BAK] g5 BRI JE B E
A5, BAKL 5 BRI1 ¥ ER IR N 12 %5,
SN TR B A . BAKL fE 5 BRIL fE
BR 5538 #% v i S5z ik L[] 2 5 0 4 o 19 2R
KAE. fEA BRs i T 0, BRIT 3§86 45 1
Z A& C i KB 0] Z 4, 38 52 BKIL(BRI1 Ki-

nase Inhibitor 1) f§ % 94 4%, BKI1 % fi T Jit i
R, 5 BRI AH AR 40 i BRI 3806 o s 76
BRs i 0. BR 5 BRI 1 %5 & fdf Ho o B2 A6 30T
ALY BRI Ky BKIL fif 25 3 40 ) 57 b, Bl B8 i Y
BRI1 5 BAKI DLl P # MR ft ( sequential
transphosphorylation) f & % 36 T 37 {5 5 B9 1%
#°BRID Y A BE RGOS B B G P, 5 BAKIL 45
&), K BAKL ¥ 2 B B2 1k {45 (S290/T312/
T446/T449/T450/ T455) BERR AL . 7% BAKT, i
RS BAKT Jd ok SO BRIT — 28457 g 95 1R 1L
524 TG O ML 3% AL i BRIT KR B 1R A6 B00G
BSK1(BR-Signal Ling Kinase 1)" 1 BSU1 (Bril
Suppressor 1), 1 1k # BSU1 ¥4 BIN2 (Brassinos-
teroid Insensitive 2) iR 1k B 2% 7% . f# % BIN2
St % 5% I+ BESI (Bril-EMS-Suppressor 1)/
BZR1 ( Brassinazole-Resistance 1)1 (1 41 4 2 fig .
PP2A(Protein Phosphatase 2A)M ] DK BES1/
BZR1 LB AL WO - 7] LUK 3Z 4K BRIT LR 1k
e G B A, ¢ 1k BR 5 5. 7E X MR 5 il g% b
BAKI {C# BRI i, A2 5 TR 5 1Lk,
it B FRIK BAKT /] DLECRN 55 19 52 AR 1K bri1-5 (g Ak
BOE A — DR AR AL R R ) B R A H AR EL AR
bril-4 i 48k 3k 2k 2 BB 1Y 28 72 1K) 1Y R AL, 15 ]
BAK1 5 BRIl f£7EJ)fig b 09 B #b. IF H X Ff B 4
5 2 BRI #E A9 16 M . BAKL & 7 76 Ji B b, 5
TEJ5 R MRS h & B BAKT W AR AF7E T M N 44 Cen-
dosome) ,BAKI1 [6] BRIl —f BEAHNEHZ . H
BRIT F BAKT 78 J5 A 5 44 v 0y 3 38 5k 25 fin 3 H Iy
AU H BT BAKL N7 % A B e fig 5 In] 3
A B A P R T A A BRI B o S B A

4 BAKI1 S5HEY) oK%

FEPIAR R R B b A5 H e KA RGOk bl 4%
TR A W) B9 AR S CEAE ) S v A7 T o 56 R 928 S
Bl PTICPAMP-triggered immunity) 1 ETI (effec-
tor-triggered immunity) , PTI J& A8 ) 1@ i 40 i 3=
A X B 52 & PRRs 2 %] PAMPs & flg22,
elf18, Bl PAMP 5| % i G 5 (PTD) , 3 % B Ak o Sk
Ly 05 0 52 I £ 5 — T Bl 25 ETT R %00 38 11 51 &
Ry — T G 5 S T R A AR A0 I P A e T R
AR VRS E L NS Sl 4 i 7 A B 410 4
o AL P 7 A BRI G, o PR Ay I S Y
THHBEENT . MR BAKL [ B S5 PTT &
ETI [ B » AU VF 2 PAMPs i1 5132 & PRR (9 3t
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A T i o R 2 R0 B R R I 2R . 2 S AR
ETT S iy s 5683 BAKT LEAE 9 (4955 T )7 0 5 vy
B G 88 SR v R 5 T AR

FLS2 (flagellin-sensitive 2)2' FI EFR (elon-
gation factor tu)""J& YA BF 58 ¢ Ay i 8 11 6 2 1
W Z AR PRRs, J& T 1Y) 32 7R B (RKD . & — il 5
FRCEE 11, AT N ity i A G B 25 A i, B X B e iy C
Ui P 25 A8 SR A R 2 5 R AL 0 2 A P R
AL R W) A A U B AR DL R B R 5] R
9 IS . FLS2 il EFR 43 3R 51 22 4~ 3 iR
JOK B3 114 44 T 1 R 1 Tlagellin(flg22) 1 41 B & K [
F(EF-Tu), bakl-4 £ F flg22 4 ¥ 5, t8 BR AR 4=
AR IF AT 2 B B A= B AT A 410 A L3
4 ROS BR B WK T B AR ALl it & B BAK1
2 5 %) f1g22 51 K B8 M. Chinchilla 25 i
B FEPTVERY I RIESE T BAK] g5 FLS2 JE i
G HAOM T f1g22 1955 . BAKIL 5% 5K
WA 25 PAMPs 40 flg22 Ay 40 BT b A9 iR
S flg22 J& , 78 8 i a] 2= 2 LAY N, BAKT A1
FLS2 JE i 5 I — R A&, o FLS2 T i# Ig ¥ BIK1
(Botrytis-Induced Kinase 1) #i B2 1L, J3 sh #8919 K
SR G ROk e 4 S R BAKT fE B R
&SR REME N FLS2 b2 14,

T3 5 I TR A RE 200 i 2 T A QU A2 1
P T i e DR S 1) (I 28 53 0 3R e 45 A0 2 i Al )
£ R E N Y QA o = s e i eV K7 N
53 08 AE, 1 RE B AT 3 40 M N R E A0 R U T
TS B R R 20 f o i v B ETT, AvrPto fll AvrP-
OB g S 1 A~ L R (3 43 UA R AR L OR TR T T A R
A 0 B A8 B ( Pseudomonas syringae pv. to-
mato, Pst) B AT i B W 1 32 0 90 18 By T2 3 4 oK
SRAETE WA AR A RIE T B S R
SRS S 414y, i BAKL, B RER B & A .
B ) HC e e R 7 =X B o 5 5 SR A A A 4 i A
TOREFEME . BE5E K B, BAKL B85 AvrPto
AvrPtoB JEE A4 9 H BAKL 1 25 5% X K Jifd Py
Wl O BAKL- AvrPro & B M RA & 2 AR
F . AvrPto 2Bl IF flagellin 55 ) BAK1-FLS2 &
BRI B TR B R A AR T BAKT Y 4 Fil
PAMPs il BR {5 5 i S g ). 3 26 % JL 46 R
T T R A ) — b R A ATL AR B A R R 2
ST T2l PAMP-Z AR & Yok B LA 5 )
U AL . FAK AN ALV HE 1 AvrPro 1 e Bk
AR B 5 bril 5355828 R AL 09 B /N AL, DLt

W2 KB AvrPto fl AvrPtoB fig 5 BAKI1 i
AW, 53 FLS2-BAKL 45 & 1Y B A » 5] isf 410 461
BR {5 5 i B 5 2k i B 55 2 W] AvrPro 1 #E ) 2
HIfE A& BAKL, 10 J2 B #% 88 W FLS2, JE B 1
AvrPto-FLS2 &2 & R GEFH 1E FLS2 B& 42 N i {5 5 4l
4y BIK (6 B2 £k o D1 BEL L AR 40 19 [ 480 52 1 s =
B JRC A e s [ 8 45 0 0 9 I 1) BT 3 A T
E— BT

Y e Z M EARZ G R &
Bt Wb 75 O P DT B 1k 328 B P 4 988 52 I ol A ) 114) 4 41
T L O R B R JT o PUBL2 F PUBIS R
5 BAKL JE 1852 & W) DT 08 55 A ) 56 K e 9% I
R, PUBL2/13 SR E3 17 % 92 0 . 8 i
BAKT 0 . & 68 HE 0] I [ i R IR fo 2 52 1 FLS2,
Sy b 3 G % g% R G A B A TR LB
T AL T —Fh anfu 56 55 b K B 1 9 YT G 28 B Y
BLHI . 78 BE B8 52 S 50 b LA BAKT it P 380 45
FiF AR, i 2k PUBL12/13 WA~ LAY 1) U-box 2K
M. BFR A, 58 A RUEPRAE LR AR PR publ2 J2
publ3 Xt flg22 75 S 9% I i #4558 , XF Pro DC3000 Ky
PrikdEm T 6~10 %, f LA K PUBL2 #il PUBIL3 £
RIKGPe s A bl G FUREEM ., Lo @t i
92 LV VE 09 7 B iE B flg22 5 5 BAK1-FLS2 . FLS2-
PUBI12/13, BAKI-PUBI12/13 & & ¥ 0% i, BAK1-
PUB12/13 B W WY 75 2 f1g22 M55 . BAKI
HAEBERR L PUBL12/13, I H BRI 1b R I3 Bl v 1
BAKI1 JC 384 g 15 1 23 45 f& BAK1Km(K317E) A fig #
% fk PUB12/13, 5 BAKI1/FLS2 H {E ¥ 1% M
BIK1, 3 A R 5 2 fk PUB12/13, {H /& 3 5% BAK1
B 1k PUB12/13 By/KF-. PUBI2/13 B BiZ &K
fEiEPE, gz R ALK FLS2 B2 X Fiz RiL B
AR5k BAKL & BIK1 #R e Hz 2= 46, A b
FUARIA {1g22 RE1S T FLS2 1Y WA TE U . (HA RE
P55 FLS2 58784 Thr867 N4 . (H 1% A2 KA g
IEH Bz RACKE R AT RN Mz Z A=W A
M R EEY . X —WEgE B PTT Y 5 B n] 58 5
BAK1/FLS2 & & FLS2 [ % i ok 8 ¥, BAK1
YT REZMEFTERN KRGS0, HEi A
FEHLIE 1 A B A

2011 4E Albrecht Z:0° #7388 38 17 BRs ¥ 7% 19
BAKT JEANRE 5| A& A L 1Y 5695 B » 403 1 480 ROS
B3 I, PTT A ok 6 P A9 3838 & 15 3@ #F PAMP
B PR 1 BAKT WA BB Y BR K, BR A
PAMP 5| % (1 % 9% 52 i 48 7 T BAKL, i FLS2 i
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%, %Y Z RS BAKL BF 5T 3t R 641

5 10 B 5 S W AR T BAKT, 3 5t R W] BAK1 Jf A
& BR {55 5 FLS2 &2 ) R [ ¥, 2011 4
Belkhadir %5 438 1 38 JF i F2 5 BRI 40 il 4K
T BAKL f 6 5 SOV - 1006 4 57 5 BAKL i 6 9%
JNEEA 50 . W] BRI ] Ho Al MAMP 32 {4 55 4
5 BAKL AR [/ i, SCEESR I BR 55 R 6052 S0
IR /E 7 22 BAKL, X £ W] BAK1 2 511 BR
T SR S 22 B A A S 2% Y 58 SUAE S T )
SIS TR] 14 1 BE 25 0T S [ 1 i R o (ELEL IR B 3L ie
ATFIRAWIIR

FHA B2 Z M55 & A W 176 8 H JT 1 KAPP
(kinase-associated protein phosphatase)t™ f¥) # fig
i R TR DX A 4 e 22 A TR g TR W TR Ak 1Y
S WK A AR KAPP (% 388 5 /F X (KI-
FHA)E R — A A R 7 34507 2 Z R3S 5
WA AR A K R IR B B . fE % KI-FHA
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Fig. 2 Identified interactants of BAK1

BAKI1 is involved in multiple signal transduction pathways,
including BR signal with receptor kinase BRI1,cell death control
with BKK1,BIR1,BONland BIK1.as well as innate immunity
response with AvrPto/AvrPtoB,FLS2,EFR,
PUBI12/13,PEPR1/2,respectively
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