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Cold Tolerance Research of Sly-MIR167 in Tomato
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Abstract:In this paper, Northern hybridization was used to analyze the Sly-MIR167 expression pattern of
tomato under cold stress. The result shows that: (1) Sly-MIR167 constitutively expressed in roots, stems,
petals,fruits and leaves of tomato at 25 ‘C. However, the expression trends become more greatly at 4 “C.
The result indicated that Sly-MIR167 was induced by low temperature. (2) The 35S : MIR167 expression
vector was constructed and transferred into tomato by Agrobacterium infection. The cold stress experimen-
tal results show that the transgenic lines have better growth index than that of control. Moreover, the chlo-
rophyll content and F,/F,, of two transgenic lines(T,-5 and T,-19) decreased significantly lower than that
of wild type;more proline content and less MDA content in the transgenic lines than that in the wild type.
Sly-MIR167 can obviously improve the cold tolerance of tomato. (3) The expression assay of target gene
NF-YA1,NF-YA2 by RT-PCR demonstrated the down-regulation caused by Sly-MIR167. It indicated that
NF-YA1 and NF-YA?2 were negative regulated. In a word, the research contributes to provide more applica-
tion prospects in transgenic tomato.
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The letters mean significant difference among the materials with the same treatment at 0. 05 level
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