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Biosynthesis Metabolic Pathway and Molecular

Regulation of Plants Anthocyanin
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Abstract; Plant anthocyanin is a kind of natural edible pigment,has many advantages:safety,no pollution,

outstanding stability; it showed noticeable antioxidant ability, which can prevent cancer and protect the

function of the liver, prevention and protection of cardiovascular and cerebrovascular diseases,and other im-

portant nutritional and pharmacological function. Therefore, anthocyanin has important research value and

potential applications in food,medicine and health care,horticulture and crop improvement. Here we review

recent progresses in biological functions and mechanisms of structural genes and regulator genes in antho-

cyanin biosynthesis and metabolic pathway,including the anthocyanin biosynthetic, metabolic and accumu-

lative process in plant. Prospective of application prospect and development tendency accumulative proces-

son the anthocyanins genes are elucidated in the end.
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Fig.1 The structure of anthocyanins
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Table 1 6 kinds of anthocyanins and their

substituents chemical group

NG Rhemd K2 ehemnal

group group

KA I {6 % (Pg) Pelargonidin H H

RHEH % (Cy) Cyanidin OH H

kMR 32 (Dp) Delphindin OH OH

A5 2546 % (Pn) Peonidin OMe H

#4456, % (PO Petunidin OMe OH

W25 {6, % (Mv) Malvidin OMe OMe

T R B USRI R = A B

DB RN E IR B 4-7F Bk CoA &R
N R TE R TN 2 R 24 f# il (phenylalanine ammonia-
lyase, PAL) . A 8 ¥2 1k B# (cinnamate 4-hydroxy-
lase, C4H) 1 4-F% 9.t CoA % 42 fiff (4-coumarate
CoA ligase, 4CL) S HIE MR T 280 3 L
B A 4-FF GBE CoAL 3k J& 18 Z 48 W ik A AR AL
A AE . PAL AR Y 2 R Bl 2 AR B R
PAL J&Z Wy 29 BiACs i 42 b i — S PR 3l . L7
FEAE T T A R0 40 M v, B0 Oy 2 A 0 A= i ARG B
B — A E A A Y H SR ALA
PAL (& VER A A, 38 8 AP ) PAL JH DU/
N FEI XA, CAH b W EERRE R 4-F 5
Bt CoA, J2& 5 — A~ Bl 5 B I 55 Uk D) B 19 A ) P450
fit . [A] PAL 3ER—FE, CAH JE PR DU E07E A [ A
Prrb AR Y B AR R N R 2R A R R
HEMEM . ACLEH THRNARBE T RIG—
5 TN s A 4 45 B 5 56 PR 15 2 A L 1 B

5 B B 28 B A 3 i) OC B8 B N L HY 47
St CoA AN Mk CoA FI| — ¥ & Wi B, 4-77 4 Ik
CoA TE2 /R il & LHF (chalcone synthase, CHS) . #F
SR Wi S A4 B (chalcone isomerase, CHI) Fl % 4% fifil-3-
#2 AL (flavanone3- hydroxylase, F3H) 3 X i t4 19
AT B B A B e R A EE . CHS i fk
4-F G CoA 5 CoA & MA /K. JE W
AR R 4 T A R R Y A B R 4 e CHS
S AIAE B R A R OB . CHS B K B
MR v 7 B A5 30 AR A v B A R AR D R
Ry CHI A A8l 41,57, 7'-= S L Be il
CHI J2& & S Bl A Y 1 5 ) o AU AH oG T, fi
RMKE G #E53 CHI L, F3H fiEfk
4'5" T -E R AR C3 LN b — AR A
SR, o A MR AR F3'HLF3'5 H 1k
IR B 3'5k 3", 5" B A 43 AR AT £ 1 R
FRRMEROMRERNATAY K. F3'H A
F3'5"H #f 2 J& F 40 i (5 3% P450 B K" . F3'H
KA T R ERMAEAL R R, T2 2
L F3'5 H ) o hy B v 4 0 5 2 5 R 1E
T ARE.

H P BOE R A RIE T R AW B =20 A
3AEEZ 5., o A R L R E (di-
hydroflavonol 4-reductase, DFR) ##£ fb /E B T 4 ik,
BRI EMALEER . LT R A K (anthocyanidin
synthase , ANS) I 2 # i 3 - 4 B 2 5% £ B ({la-
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Fig. 2 Biosynthesis pathway of Anthocyanin'?

vonoid 3-O-glucosyltransferase, 3GT) {E F ¥ TG 4
1 v P A A BB R . o DFR J2
BT R A O R b i SCHERG . ANS 53 AL TC 618
TR &R ALBKTE A B A £ 3GT {24l
BB R H AR E .

H AT ) A8 2R AW G & A2 R =B
BE AW, FEIRIP AL R EAREZE . M
X AETE R B M AL 6 R e is  BUR S 5 i iy
WEFEA W W E 2 . T8 75 2 Bk B 28 /948 1 A0 45 1P
1l Tk BE AL R AL WE LA S5 A [R] 9 4 1 B vy ST
AR AL R BT R R (G Y
BEREAL AL S XY AE T R A E L S I e %
FEAE . ARG O E R ] 43 3GT(UF-
G . 1€ & 5-75 B 4L ¥ #2 B Canthocyanin 5-O-glu-
cosylt-ransferase, 5GT) I ¥ [ 77 # 5L 5% 7% 1 ([la-
vonol 7-O-glucosyl-transferase, 7GT) 250 | 45 3 fi bl
FEAG G H R AR T R WA R D PRl 3-hE AL
JeF SMERALN L 2B R W SR AL 2 5 2
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T SRETFERAMRWAAT R P IR cDNA E N
W A A FVR 5 TP AR AR

A Y NCIEZE - TN B AR S (AN 82
HAE i I R P K M RO oI 55 B 4R & L S
Mz Rwoe It T LOCSE ., HETA XL Rz S
WO SR D T W HL IR AN T A C A BESE R P
A B H Ok S% 3 B ( glutathione S-transferase,
GSD%] Hi 22572 11 (multidrug resistance associat-
ed protein, MRP3) 32 2 Wi i1 [ & J6 WAL ™" 1%
WP B 6 & N I & (anthocyanic vacuolar inclu-
sions, AVIs) P22 4+ @ & 91 (a 24 kDa vacuolar pro-
tein, VP2 P G HAIL i@ UL R A K &R . LT R4
AT L e 0 P ) S U 0 o 3 B T
b X AN AR GST Ml MRP3 (135 31, 1
5% 20 Xt 400 g I A BF 5 R A B LY FE DL 2
TR BB R R MATE #4272 % Wiy 18
HRE/H Wiz, Bl —SEE X T
ST Y RTUL LR

2 AETT R G AR A G N

S A6 T R AU AR 5 18] 43 Sy 85 g e IR R 9 R
DR . &5 b B DR T O 1 A6 7 AR A 0 6 g A2 v
B3 R B, £ 84 F5 CHS.CHI, F3H. DFR,
ANS FUF3GT 45, & 15 A T 4 B 1) % s DR -4
R S5 R g5 R R A R
IR TE A FIAE P b o H sk e A B PR R O T 3
DAL 328 T A e A0 A 5L A T R A O 4F SR AR 7 2R A
I I 5% 1 4R
2.1 EZEAERRFHEXEHMER
2.1.1 BERMEREBER & /KEG KE (chal-
conesynthase, CHS) ff fb 4-FF 5.8 CoA 5N — f
CoA A BLAT /R >y 24 ¥ T 312 44 3 A 1 e B 42, 2
FH YA B A — A QS . Kreuzaler
SEUNOR FH e ) 3 5 2 A B AH 45 B 1 O 1k DA RK
FHE RSB N R B YA RN 2 F2 )5 %
#4 CHS S R 2 43 5 ok . B, 2 M
B S NS AN /I N R S PN 2
PP sy B s e T CHS 3, CHS JE A 4 5
BT BE 1 N & 40 B B Ak 7 1 b
2, AN 1 A, Rt 60 AR K AR
S RGN T 2 gt 340 DR L EHEL K
TRF 5 FHET AR R SR B £, CHS 3
PR — A 22 56 PR M, 5 TR 1) 4 ) DX R 65 4 #8814
PRAF s HLAEAS [F) BHAR 0 18] 2 A B 8 B AR SP M. 2L

ARk CHS B FIRAFAE 3 DRI 22 53 i
Br, HAR RS A LUP A ok HE CHS2 1y 3k
B Wt CHS1 fl CHS3 &5, | F CHS %]
b T AE A8 3R A R AR R A PR O )
CHS JE[H 82235 m] DLES & 78 628 1R 18T 48 T i Bl
B Aida 2555 5 A CHS 1Y KRR £ 5 H
A5 50 26 €078 IR 1B b Bl I Fukusaki 85 2 F)
RNAi HAR S H- by CHS JE R TR G B 6
FUIK 145 1 e 5 DAL

2.1.2 BERMBRUEER & /K546 (chal-
coneisomerase , CHI) % [5] 4 15 1) 25 5% W 57 44 il & —
b Th REME BAAA, 2> T4 24~29 kDa, XA [l HEH)
CHT B [H (¥ 2 B 1R 7 5] 43 Bt Jc B0 B 8 i Al
M 2976 4926 ~82% Z [a] . CH T % A 1 W] I 5 57
TERL Y v BE RSP H 5 2 A B B A
P 1987 4F Mehdy %5 R LA HE A 1 1k 32 [
Wi sy CHI SRR 5 760 42 40 LB R 5%
Y b AR gE s R BRI . CHI JE A & A~ 2 5
HWNFEG  fEEREEH CHIA i CHIB 2 4~ CHI #
W AH BT R XTI LGEA M , CHIA 7255055
) HFIAE i B A P Yy e ik . T CHIB AXAE R
BAE A G ekt AR S A Bl LA R R
S, o H LA 3 Fh CHI R 1§15 L) 4y 55 4lifk
JE AT RAE 3 BT R B, b 2 R RE S L) 6-52 A IR I
(6-hydroxychalcones ) F1 6-i % & /K fifil ( 6-de-
oxychalcones) 4y IR ¥ & Ji 5+ Bl 5 15 55 41— b il 2
RETE 2 o8 W 3% 72 v 6 b 6-F8 A R . X
CHI [a] T iy i — 2B 3 it 7 ¢ T CHI fE 2 8}
A0l SR kA O TR A S . CHIT SRR 2
KEM G EY A BER FE R RN Z —,
FERR X TR A& Y & A AR
TR AL A CHIT B PR 7E 9 i vh o e 8 a6 foff FL2R J2
RS Y A RS T T8 AR TR R AR
Frp R BTG W) R AR A A B P B R
METEH i 22 5™, Nishihara 25758 33 RNAiL $ A
KRB gy CHIT BE P Rk Ml J5 » A /K- B & & b
Th AE WAL 6 R & D B R A TEA
W R S0 & F oAb, CHI 55 CHS
PPl Tl 1 R 3R M 2K 52 016 ] 9 A0 5% SN R 5 L O
FAEPR A X A P W] P 02 CHT 3R 5 CHS $E A
mRNA Pp[r] Fik iy 451

2.1.3 HERE3RUEBEER Wi R
(flavanone 3-hydroxylase, F3H) J& &k [} — B8 {1 ¥
R TI AR R » S2 0 B AR MO Fe® ™ LA 2- 0 % R 4
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VRl B 1 B R S e AR ) 2 0 R A )
A OB 4 iR O fE YT . A 1991 4F
Martinet %% 15 Y M\ 43 1 5 v 5o B 759 31 F3H SE
PR BLE RS A4 PR JT PR 28 oK L H i AL
KVEACEE I R Z R R e PR B T B AT
YR F3H 3L, F3H SERAEEE S oK,
U T 55 A8 45 55 22 KO b LB 5 DL DR A
T LT AR AE 2~3 A8 DU0Y Gl 3 % 4k 42
FWF TR FSH & —A 4 75y 42 kD iy BLA
FEH, Hp His220, His278, Arg222 FI Ser290 & %
PR 7k R o T ) T R O R R 0 A E e
Tl 32 A T A 4 T IS 4 2 b j 3K R i FSH
f9 & 35 A DA F B 1R A S 2 IR 7 0 0 5 . Wise-
man 550 BB R I F3H kDA (1 2 35 5 B0 i A
EERAKTVH TR, — DB I FSH 2K 8
o7 FH T 5 R 2 Ak A AR AR S R,

2.1.4 “HREEWEEEREER 5L o i f
A JF B (dihydroflavonol 4-reductase, DFR) Pl — &
Wi 2 (DHK : dihydrokaempferol; DHQ: dihydro-
querctin; DHM : dihydromyrecetin) 4 J& ¥ , 1F 4l
T NADPH [/EH T8 4 A7 1Y 3R L 38 J5 ok 2 3, 7=
FETAFAE G . 5 DHK .DHQ 1 DHM % 3 #i
WU YRS O R e R AEZE R, o R A8 R ML 4 K
g R R AL 6 R A YA R AR S
FIRIHE — A LMW, O Reilly 2051985 4 % il
FEPE AR H AR N E K& AR g i T DFR
FED . M MR ARINAG . Foah A4 H A O
PINN AN S AN =L I GV 3NN € N = ETN S
W R SE A S R ) R v I B % KR TR, DFR Sy B[R]
it J& T NADPH Vi it Bl 5 15 o i A —
B 5 B 7 Ay A TG 4 8 R A GBI . FER TR
F R, oy F R R Y 245 A X A S R I 8 FE AN
[l 4 b v & B2 fR 57 DFR 5 NADPH %5 & fi g
“VTGAAGFIGSWLIM RLLERGY” j& & & 4 <7 45
IR . X DFR 3 [ 4 203 55 © 4 K i i
TR B A YR DER JERAEA T & & B
BOANAS ) 2 2R BB AL 1) I 28 32 38 R M A I AS [ o] 458
HRWAEE 0.

2.1.5 HBEHEANBERMEER 3-O-HEEKE
i & 1 6 R 1 & B Canthocyanin syn-
thase, ANS) 3 [ A1 3¢ 55 i 3-O-Fl & ¢ 8% il 2 [N
(flavonoid 3-O-glucosyl -transferase, UFGT) & 11
SAETT H AR & W B i 0 e — A A IR L TE A
JO R B [ 4 A AN AR B AE T 3R e 28 M AR

MAEHF T . ANS e H 32 ZLAE A8 0 6 1 IR AL
{1, % (leucoanthocyanidins) & fk 7= 4 5 0 B 46 1 2
(anthocyanidin) , Z =P iR E @ K A BB R P
—ANHEEASGYT Y R ATE R E %,
FEA R B UG CANS) 22 2-0ODD fiif, ANS Je[H 24
J& Menssen %57 M E KB A2 5845 f rh % 5 IF A
FHEG e F AR HOR s RS 3 . HAE . ANS P 278
Z Y e AR ] g In AR RO A
Pr AR A FIOK RS 5. H AR IE 1 R 280 ANS %
RZEM I 1AW & T 2 A Hh e T 41, H 89
PF S — S HK R OsANS %A N & 1. #24
Hi ANS JEDI HA T AN DL 2855 ANS JE[H]
A 2~3 NI FE S BEE R ANS S 2 45
DURT S BEHEI ANS 35 P el B0 38 Rl /) 3 R
A . ANS BEIH Y 63k B — 1 41 4% 5 v
IHZ I I S A s

FEET 3-O- W 5 16 B il 2 16 (6 R 18 L i
JG— AW EEA TR AR E W AR N E
A6 R A5 B 28 BB 3-O-W5 3L 5 B i (3GT)
UDP-glucose | 1% #j %5 B 5% #% 2| 46 6 % 4> 119 C3
FRIE b AT A A8 0 A R 5 AR 2, Schiefel-
bein 2 R WITE EOKIYAEZG h LB 3GT (A4 1
Iz AL . HET.UFGT MK NAEA: . 5
B IR AR rh oy B ok . BESR AR AR BT
B IR RMBL R IEF RS UFGT JEPE M5
W 19 TEAH DG FEAN [l 1 i A e UFGT B& R 458
B UFGT R 23k 06 M 728 10 5 30 T 4 4
PR ) 20 0 p AR
2.2 BREHAREEXAREER

45 D) o B 5 S DXL e SR DR RE 8 0 R
1 DNA-ZR [ o F & H -2 5 5 AH B AR T30
B 0 25 A R Y B s R GR L AT IR T AR R Y
G, HETBFRERY . 2 50 H R G0
HWTFEA 325,00 MYB,bHLH f1 WD40 £ 4,
KREFHWALTH ZM 4 BUE T MYB-bHLH &4
Wa# 3 KN A 5 AE P B MYB-bHLH-
WD40 & 49 (MBW & 4 1)) 1 4% I 4 45 44 5[5 11y
Bk RN,
2.2.1 MYBHZFEF MYBHFEHFZE K
DNAZE & & A, & — B DNA 4545 X
BW—MYB &5/, MY MYB 45 /38 B A7 )7
SRR S 20 52 A S R A B, H b A R
SF B SRR ) PR Y 51 o X IR ST I 2 SRR AT LA i
MYB & 1 45 1 38 31 B 1l IR T -8 Jié - 5% A -1 Jié Che-
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lix-helix- turn-helix, HHTH) 5 ¥, RBEE S T+
MYB 45 # 5 /) 4~ %, MYB % S 7 7] BL 4y o 3
F (D H— MYB 253 (RI-MYB); (2)2 HEHE
MYB %4 15 (R2R3-MYB); (3)3 f~E &E MYB 4%
I (RIR2R3-MYB)' . 6 R A L MYB %
ST & R2 R348 2 A JE P (R2R3-
MYB) s f & R3 — N3P (R3-MYB)!™
ROEF YT rEEE S 55 R A6
JREEM MYB 5557, i K CL/PLUEA 41
ANZ2 .4 4 5] Rosea . % ) VoMYBA Fl4l i I
] TT2.PAP1 fl PAP2 %, 1986 4F Cone % M\ &
K E RS — AT AR CL W&
MYB 25 ¥ 38, v LA S5 08 15 ok )2 46 & ik
WA ERH AL M H XA H P1 IR E
i, PI 5 CI @ FUE, # & E & CL 1 # 03k
U7, BRAE4 AN2 fif i) MYB & [ R e A6
BB EENRE LT LS Eok A C1 B, PHA
it MYB 2 [ 76 16 26 i b 3k AN4 4 i 7%
BrgEd i MYB H (1, k48 MYB & ({5 5% %
S R A AR E, 405 R2R3-MYB
5k [ 7 Roseal (Rosl) , Rosea2 (Ros2) #1 Venosa
(Ve LML 4r (o, i Hix 3 4~ MYB 2 (1764
AT R EY A Kb S bHLH & FAH AR
Rosl .Ros2 Fl Ve W] LIS L H RE A BB AR
AL B R A 28 . # 4 P  R2R3-MYB R 4%
FN TR VoMYB5a 316 Bz 5 FAD T 1
KHFWIFRL  VoMYBAL 12 e S 423k, 1]
PIS S 4 A6 Z AW A B VoMYBAL 134
WVER T2 bHLH AW B . M4 EH £ 6 W
3N VoUFGT 85 8 F A% VoM YBAL %0 . {H.
A VoMYBA2 & B3 « H VoM YBA2 AN FLTE
HAe s R AWML E™ . BRI e PAPL 3 H 4
iy MYB % 5t 11, PAP1 2 3 KPR T
MM REZHHEF R EOETRENER. 5 Cl
FE 5 (A PE UL . PAPT # PAP2 R u] RE & CI
FEHEM AR R R R . SF I MYB12 2R H
AP R S T A ) A B R RS 7. MYB12 5
FORM P 7 HA & AL R R R R 2
bHLH PpBh, 7 LG CHS.CHI F3H #1 FLS 3%
W23k . MYB12 Rii¥E DFR SR k5 . A
LM 2G4y B B B GMYB10 540 5 0% Fn ik 25 48 1
MAETT 2 A R ¥ 7 B e B2 R R GMYB10
5t FEZEFAE B E R P A 58 GMYB10 Y
FEAE 22 B 2 AN rh 23K L IR i GMYB10 5 bHLH

BT GMYC1 M HAE . GMYB10 1] L) 75 5 % 3t
U R R AL R A T . MdMYB1 & 3
Herfr oy 85 31 R2R3-MYDB B4 5% 5 F, 76400 B T il
WA M MAMYBI S5 ZM 5% %
K0, Ban BTSSRI B v 4y B A9 B Md-
MYBA H3 ik B A H 20/ 5 Fl s 5 4, MAMYBA
FRELS THE XA (MIANS) E 31 T Md-
MYBA B AL R 1 0 (9 Bk i 3R 8 45 R Bos . 1 it
BT BAT A R ASCIR ) [ P A R PR R b
FRAET K. Mano 57 H 1) 2 He v 4y B 15 2|
MYB 3 IbMYB1 Fl IbMYB2s, IbMYB1 5 5 Hh
P E RN CHS,.CHI,F3H,DFR,ANS Fl
3GT MFRIKMAETH R MFL R, Palapol % if 58 %
B LA SR p e A8 A S8 40 0 1 ol o il R vp e S TR T
GmMYB10 %3k 848 b it K . % GmMYB10 5 #l7
I+ AtbHLH2 t [a] % {0 Ml 5, B8 A 08 GmDFR
M AtDFR Ji3¥ . %W MYB10 7EJR#= L H R4
G R A AR .

2.2.2 WEERE-FBRERETFT O GEIZRE- -
12 i€ (basic helix-loop-helix, bHLH) %% 5 [H T 2 i
P AR T MY B 5 s 710 58 — REG s I P K
. bHLH ¥ 5% N ¥ & 3 45 1 & F R 5F 1
bHLH %)% . 4> bHLH 35 25 By 60 4> 2 JE iR 5%
FEH R A 2 AT RE X, BT N AR Sy 14 6 14
AR DNA 55 XA C Ky HLH X, 879528
B AAET R G RO MY bHLH % 5t P ¥ 5 %
gz —"7,

Ludwig %" & LA ) h 55 — 4~ bHLH #% 5%
Bl F Kk RICREDD 28 1 Jo it 8 F 45 F ik A& 7y
g5k R GA AR CHR R I AR R A W
bHLH # A F i, R1 & AERBEAT R
A B B Sl RE R RE A 0 P i R AR (bHLH 2544
B ACT 25 #3580 , 1E b % #% R2R3-MYB & A
(MIR %5 # 58) F1 WD40 & [ (WD40/AD %5 #4 38
H AR 1 35 1 (docking protein), Jf H il 4 MYB-
bHLH M HEAEHE G RAH 745G THERE K
B R 7 B e i C1 2 E i 5% s B0 1
PE. RIGE AT REdE o {2k C1 1 5 Ml 1
(IN1 D/ B 3s C1L&E A . B R Rl E
H AR B B R S 8+ X T A [\ 3h 38
T IAS TR A8 5 % ¥ P 45 4E F - X T & E-box 1y C2
HH (ZmCHS) il Bzl 3 (ZmUFGT) ,R1 7] 3@ 13
bHLH 45 #4 508 it — KAk ER N HIES C2 Al
Bzl {8 X1 E-box Z54G , JTE WA JE PR 1Y 235
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HXFRZ5 4 FEOE OB T R1 5 C1 A BEAEHT
Xt F AR E-box (9 Al 3K (ZmDFR) ,R1 i ATC
SER Y IR — R AL T S CL A B AR
WEHE AL 3 8h 1 XL i R1 383 i #eA iy bHLH
SEMEAR 5E RIFL, NI #E AL Jg 8 7 X JE i C1-R1-
RIF1 ¥ 5 2 AW 30E A1 SER £, LR I
hE2HEEEE X AWM bHLH EAYRET
bHLH %% = W 41 (subgroup M), A TT8(At-
BHLHO042). GL3 ( AtBHLH001). EGL3 (MYC-
146/ AtBHLH002) il MYC1 (AtBHLHO012) ; & fi]
FRE 5 N W4l R2R3-MYB & (M BEAE R, 1%
PAP1 (AtMYB75) . PAP2 (AtMYB90) . MYB113
M MYB114BY , IS4 & TT8.GL3 #1 EGL3
(1 2 3K T HEXPAE T 2 B R 5 D) REAE AR5 4 E & R IT
4 .GL3 fl EGL3 FE877 F3'H 3k o i /E A4
M 7EJE 4T DFR f1 ANS/LDOX )%k % EGL3 i
FEEAERCY, WEIF bHLH &E A R Zi i 2 58
B MBW & & W85 Fp 7R A6 T R LA R E SR AL
FEA B, Bl TT2-TTS-TTG1 & 4 W AE i #l5E
TR FHRAFTRAER . BT HATESTRES
m bHLH % H4 2 ©~:ANL fil JAF13, AN1 3t
H 5453 H DFR [R)E . 7] B #8757 DFRA 3%
k. Quattrocchio 251 5 3o [A] P 70 B 15 2] %% %2 4
JAF13, BN 5 AN2 — & ALE M Fr b E i 5k fg
TS DERA JR8h 1. 5 A% CHSA Ml F3H %
HIRE Rk H JAF13 5 AN I BE AR 58 4
WL JAF13 ik 2 ANT AR FRA, &
A4 bHLH 25 [t 28 o F 400 g 7 2 38 o B &
MBW Z & YA MERNERL., Z25ERERY
14 WDA0 % (4 AN11, R2R3-MYB % |9 AN2,
AN4 L) K £ ¥ % ¥ DEEP PURPLE (DPL) i
PURPLE HAZE(PHZ), MBW & &%) H G ¥ 15
DFR.AN13.RT.AMT f1 CHSJ W3k, i K fg
P84 CHSA.CHI.F3H %3k, B8 EW, %
AR B A i v MYB3 W] 0% CHS %35, H
A% bHLH & (1 8™ it F 418 R2R3-
MYB % FI AR, MBW & A 91 8 18 55 A [7] 2 2L 76
R . WA R R AR bHLH &
A VoMYC1 fil VoMYCA1, VoMYC1 F13 5 JF
TT8 &4 AN1 — B4 T bHLH & [ 4 11{-1
WA, Z W4l bHLH & (¥ nf 65 R MR s
ZA .1 VoMYCA1 581/ 2F EGL3 fl GL3 . %
b JAF13 35 bHLH33 — i B4 T4 12 T
41, %W 4 bHLH & ([ R E 46 R A&,

SR FREY G ROREMPFRERY .2 4 bHLH
HH MdbHLH3 fl MdbHLH33 25 THEE S
JRETT, BATR MdMYB10(R2R3-MYB) A %1%
FAHE RGBT L. 5 MdMYB10 AHEAE G
SRR SRR AR aiEE R,

2.2.3 WD4OEFHEF WDI0 EHE—KKH
EHERG X REAS R, —REH 4~16
ANMEREREE M WD JETF 4. WD Bt — A4 e
FERSF IR0 X8, B4~ WD BRou & A K2 40
A G R B L 2H L DR SF P 81 %7 9 BAN R 3 11
~24 AFR A GH — ik (Gly-His, GID JF 8. C K
Uit Lk WD 25 B (Trp-Asp, WD)/ ™0 HHij . & 16 5%
B4 PEIFER ERFEZMEY S THE
F A WA WDA0 255 58 . De Vetten %5
FEEF PRI T ANIL, R4 anll AR R
HL SR BRI DER 13855 1 F B B 2 52 ) 46 1 £
AR, HWRA LK AN2 7] LR & anll, K&
DFR {33506 1 o] WAE AL R A U i #2242
ANIL LT AN2 1y Bif. #ipor TTGL dEEH 5%
#4 AN1L BAT & B i ) S . g ot TTGL
AR /AT R AR . TTGL it 5
bHLH 2% # 5 Bl + GL3, EGL3 1 TT8Y DJ K&
MYB 246 5t TR IF TT2 5, PAP1™ T Af
PR S B4R A6 T R A5/ L i 25 Rk . &
K PACI 4 WD40 H L B TAEH R AEED
ANI11 Hl TTGI™ " Yamazaki 000 75 £ 95 i+
ORI T LT R A MAHCH PEWD & H L fE LR I
thit iRk PEWD A] DI INAEE R B9 & L. PEWD
AN WD EEFH., AERTH S AN1L Al
TTGL 43 5045 81. 3% Fl 77. 8 %4 B AH AL B, LL 45 1
SFL.PFWD 2 A7 76 15 2 BH IR S5 18 M, f 3 700 1) S
N-WEREAL B R 1k DL S be ik . PEWD By N A 3 (1)
—BUE BT 5 5 B LA S NLS J3 51 AR HE
20 i 67 S B0 IE B L 2 B ) L A P
I PEWD A Gl ok 5 MYC K& B 3w AE M, o)
A R B A AL b TR T R A SRS
BamirhEEGSEHBNIEN. F RGN
WD40 & H# )& T 7 — A4~ #7332, JF HAE g

HRE I T BURY A2 1 45 R S A AR A BT EAE
RS, FEALRE IT 1rgl 28 AR K vh B 4 3% 35 1L R OF
TTG1 2 H 2Bl WD40 2 (1 AT DLk kb 28 28 1K 1)
R 2 A xR W]k 26 28 (1 i AR I HLEAR AL, BB 5
H—REALSAEEMERAY . S0 AR
WIRAE 7R X S WD40 ZE H g5 bHLH #l
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AT AR 5 3 o A5 o A ) A I R R D B R
Br W HPIEE R A A B R UAS 5HERS
B o TR R T EIRA TR . AR A
hTCRE R TRZ 5 AR R 5 B SR 1 45 2 I
R P DAL AELAE 7 3R 10 AR > B2 2% 1 1 4
W, 1R B ST I8 A LB R A8 R AR A R
WA . AT 2 2 XD B SR ) T
TR IR FE 2R 58 i o R RF 25y . e

XHAETT 2R G MO Sl L AT T 0 B M A8 1 D fE -
SE  HAR I B SR FERL I BIE TS 2D o T A B A
PR VBB AR R E AR RNA T3 AR (D RESE A
AR A 2 AR R i — P E AT R BN
FH S R IRPE N 1 7EAEH R & AT
WA VE 2 A o A DR 4 )L LN AE R A 1B 1 L B2 i
ABUR G AR A i 42 v 25 e s IR 7 19 D il S L
AHELAE FIBIL - S0 50 20558 R 1~ X 46 7 28 B 52 0
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X PR AR )AL R MO LR LA RO T
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