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Effects of PEG Stress and Recovery on Activities of Key
Enzymes Involved in Proline Metabolism in Wheat
Cultivars with Difference in Drought Tolerance

JIANG Shuxin', LIU Dangxiao' , PANG Hongxi?, LU Jinyin'*
(1 College of Life Sciences, Northwest A&.F University, Yangling 712100, China;2 College of Agronomy, Northwest A&.F Uni-
versity, Yangling 712100, China)

Abstract; The contents of proline and activities of key enzymes involved in proline metabolism in the leaves
and roots were investigated for two wheat cultivar seedlings (differing in drought tolerance) exposed to
PEG-6000 stress and recovery. The results showed that: (1) The root length and the root dry weight of
‘Pubing 143’ (drought tolerant) were little affected little by PEG stress, whereas the root length and the
root dry weight of ‘Zhengyin 1’ (drought sensitive) decreased significantly. Under PEG stress the increas-
ing range(75.0%) of proline content in the roots of ‘Pubing 143’ was more than that in ‘Zhengyin 1’
(37.7%) at 36 h and the proline contents of both genotypes tended to be equal to their respective control
after recovery from drought; (2) The activities of P5CS(synthesize proline from glutamate) and 3-OAT
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(synthesize proline from ornithine) increased significantly in the leaves of ‘Pubing 143’ under PEG stress,
which indicated that two biosynthetic pathways were enhanced in the drought-tolerance cultivar ‘Pubing
143’7 under PEG stress. P5CS activity increased while the change of §~OAT activity was not obvious in
‘Zhengyin 17 at 36 h,which indicated that the leaves of drought-sensitive cultivar ‘Zhengyin 1’ synthesized
proline from ornithine primarily under PEG stress. Under PEG stress the activities of P5CS and §-OAT
were less affected in both wheat varieties roots; (3) PDH activity had a significant decrease at 36 h under
PEG stress and increased significantly after recovery in the leaves of ‘Pubing 143”. PDH activity increased
significantly compared with control in leaves of ‘Zhengyin 1’ under PEG stress. However, the activity of
PDH decreased significantly in both wheat varieties roots. These results suggested that proline was mainly

synthesized in the leaves of wheat and the accumulation of proline in the roots of ‘Pubing 143’ was associ-

ated with increased P5CS activity in leaves and transport of proline.

Key words: PEG stress; wheat; P5CS;5-OAT; PDH
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Table 1  Effects of PEG stress and recovery on the RWC and growth indicators in the wheat seedling
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0 93.10%2.00a 20.3640.87e 15.50£0. 36f 17.140. 6h 6.7+0. 2bc

Xt B CK 36 93.96+1.68a 24.16£0. 85abc 17.2840. 42bc 21.140. 6de 7.94£0. 3a

Wk 143 R24 93.7341.50a 25.0240.99ab 17.92+0. 42b 23.94+0. 7ab 8.140.2a

Pubing 143 0 94, 46+1. 20a 20.3940.91e 15.48=+0. 30f 17.7+0.9gh 6.8+0. 3bc

bE T 36 89.8940.92b 22,6340, 74cd 17.0440. 46¢d 19.6£0. 8ef 7.8£0. 2a

R24 93.5341.75a 23.3440.90bc 17.84+0. 24b 22.040. 7dc 8.0+0.5a

0 93.91+1.18a 21.08+1.03de 16,0240, 42ef 18.1£0. 6fgh 5.240.4d
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e 1B R24 93.93+1.41a 25.9440.63a 18.95+0. 29a 24.840.9a 6.9+0.2b
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R24 94,34+1. 34a 25.30%0.90a 17.48+0. 34bc 23.1%0.6bc 6.2740. 2¢

HR24 FREK 24 by W5 A AR R 7 B 2R A 3R] 2 53K 0. 05 B E KT,
Note:R24 stand for recovery for 24 hours after drought stress; Different letters indicate significant differences among treatments at 0, 05 level according to Dun-

can’s multiple range test(P<C0.05),
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Fig. 1 Effects of PEG stress and recovery on the proline content in the wheat seedling

R12 and R24 stand for recovery for 12 and 24 hours after drought stress; The same as below
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Fig. 2 Effects of PEG stress and recovery on the P5CS activity in the wheat seedling
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Fig. 4 Effects of PEG stress and recovery on the PDH activity in the wheat seedling
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