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Abstract: Acetohydroxyacid synthase (AHAS) is involved in the synthesis of branched-chain amino acids
(BCAASs) in Arabidopsis. To investigate the effects of various domains of AHAS on the BCAAs synthesis,
the point mutations harboring in the specific sites of the large and small units of AHAS were introduced by
site-directed mutagenesis. The mutagened histidine-tagged units of AHAS were expressed individually in
the bacterial hosts and the recombinant proteins were purified using Ni beads. The point mutated large and
small units were reconstituted in vitro and the activities of holoenzymes were determined. Moreover, the
effects of valine, which is one of the final end products of AHAS,on the activities of the mutated holoen-
zymes were also examined. The results showed that the G88D mutation in the small unit of AHAS abol-
ished the final end product inhibition and the E305D or E482D mutation in the large unit decreased the ac-
tivity of AHAS holoenzyme. The two mutations in the large unit displayed difference in the activity of
AHAS and the E482D mutation presents the more effects than the E305D on the activity of AHAS. The re-
sults in this study suggest that the large unit interacts with the small unit in the AHAS and the various do-
mains in the units of AHAS exhibit distinct functions.
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Fig. 1 Schematic diagrams of the large and small units
and the mutant positions of the AHAS protein
A. Structure of ALU and the mutant positions in the mutant ALU

version; B. Structure of ASU and the mutant position in the
mutant ASU version; Numbers indicate the mutant positions

relative to the translation start site; ACT. ACT domain
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Fig. 2 Construction of the bacterial expression vectors of the
AHAS large and small units and mutant versions of AHAS
M;. DL2000; M,. ADNA/EcoR | + Hind[ll ;1—5 indicate the PCR
products of ALU,ASU, ALUPD AL UFE2D and ASUGSSD
respectively;6—10 indicate the BamH [ /Sal T double digestion
verification of constructs in which the PCR products of lanes

1—5 were cloned into the pET28a bacterial expression vectors
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Fig. 3 Expression and purification of the hexahistidine-tagged proteins of the

AHAS large or small unit and the related mutated versions

A. Expression and purification of the 6x-His-tagged proteins of ALU, ALUF%DP and ALUF2D

B. Expression and purification of the 6x-His-tagged proteins of ASU and ASU®%P;C, Western blotting of the

hexahistidine-tagged proteins of ASU and ASU%*P using the antibodies against His tag. The upper panel

indicates Coomassie brilliant blue(CBB) stain and the low panel dignifies the Western blotting detection
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Fig. 4 Activities of the reconstructed holoenzymes of the mutated ALU and ASU under various concentrations of valine

A. Activities of the reconstructed holoynzymes of the mutated ALU and ASU;B. Activities of the reconstructed holoenzymes

of the mutated ALU and ASU under various concentrations of valine
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