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Metabolic Pathways and Absorptive Capacity of
Formaldehyde in Geranium Introduced DAS/DAK Genes

ZHOU Sheng’en, XIAO Sunqgin, HAN Shuang, XUAN Xiuxia, SUN Zhen, LI Kunzhi,CHEN Limei”

(Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming 650500, China)

Abstract: This study overexpressed dihydroxyacetone synthase ( DAS) and dihydroxyacetone kinase
(DAK) genes,which are two key genes for formaldehyde (HCHO) assimilation in methylotrophic yeasts,
in chloroplasts of geranium to obtain transgenic geranium with DAS/DAK HCHO assimilation pathway,
The metabolites of wild type and transgenic geranium under liquid H®* CHO stress were comparatively ana-
lyzed by C-NMR,and the physiological and biochemical indexes of wild type and transgenic geranium un-
der 48 pg » L7 gaseous HCHO stress were measured. The results showed that: (1) Under 2 mmol » L™
liquid H®* CHO stress,overexpression of DAS/DAK genes enhanced the role of Calvin cycle during the H"
CHO metabolism in transgenic geranium, thereby the yield of sugars increased approximately 2. 85-fold,
and simultaneously changed the original HCHO metabolic pathways of geranium. (2) Under 48 pg « L'
gaseous HCHO stress,the contents of H, O, ,malondialdehyde and protein carbonyl in transgenic geranium
leaves were much less than those of wild type. (3) Under environment-polluted gaseous HCHO stress, the
absorptive capacity of HCHO and stomata conductance in transgenic geranium leaves remained significantly
higher than those of wild type. These results suggest that overexpression of DAS/DAK genes can effec-
tively improve the ability of geranium to purify the environmental-polluted gaseous HCHO.
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Fig. 1 Diagram of strategy for installation of a
photosynthetic HCHO-assimilation pathway by over-
expressioning DAS/DAK genes in chloroplasts of plant
Xu5P. Xylulose-5-phosphate; DHA. Dihydroxyacetone;
DHAP. Dihydroxyacetone phosphate; RuBP. Ribulose 1, 5-
bisphosphate; GAP. Glyceraldehyde3-phosphate, FBP. Fructose-1,
6-bisphosphate; E4P. Erythrose-4-phosphate,
SBP. Sedoheptulose-1,7-bisphosphate, S7P. Sedoheptulose-

7-phosphate; Gluc. Glucose; Fruc. Fructose

[ feig 72 (& 1), i, Xiao 4502 7 4 5K R ) 40 55
A gk ot i ek DAS/DAK SE[H L 25 3% 0%
AR BERSTE S B 10 i S (A op R AR L R 4R R T
B AR W ORI R A6 HCHO #Y RE

RAEZL L) HE (46 L 2278 1 A6 A 1Y
A6 YT 326 5 30 Ry 28 ) 25 1 B i R A 3 ol FH 1% 32 25 04
BEZ— . BB o 2H 2B SR P A AR
e RE N ERAE RO A B ASBIE ST DA R 22 38 Dy b1 L, 7 B
TR EFE Sk A P i iR % ik DAS I DAK %
JFIHT C-NMR 7 AR X i & HY CHO 38~ B
A RV BE R R A2t i HY CHO R ™= 9 ik 47
FOA B, O 38 5 T 2 <Mk HCHO p a8 R B A= 2
TR R DR IR 2 2 (1) A B AR AR A 43 BT X R A2
HCHO $iit: . HCHO Wi &85 DL S S ALAE 3 310
S AR DAS/DAK JE PR IT K 56 BRI B )
TRILA HCHO Y5 G4 (1 H AR 52 415 1118 4K 4
O R S LD RS
11 REZpELMESR

T AR R 23 MS {37 5 (pH 5. 7) |k
B, REIEME LS IR Song % 1 5 ik 47 .
& 4 pKm-35S-PrbcS-* T-DAK-PROLD-PrbcS-*
T-DASM 3635 2k & 19 & 7 6 [ Agrobacterium tu-
me faciens C58C1 (pMP90) |15 3% F & A 100 pg -
mL " Spe W& LB KR k. KA R AR A
PRFF A T A AR L R R 0 L RS 50 pg -
mL R R (Km) ) MSCEA 1% jERE W/ V) K
Ik b i B D R RN

N T AR RSN T i PUVE S e A
50 pg » mL " Kan 1y MS R 53 [ %, SR 5 #4615
IS A 300 MR MS K353k, JF HZE 25 °C 100
pmol « m ? « s MEHEGI N B IR, B L B A
A Km HidEp K235/ B &6 320 B0
MS Bi g3k |4k 2 35 37, 345 J0 i 5 BE I R 2285 )
Hio MAM RS RY B A Km HidE H AR B R Z 3N
WREBBNESH /2 BHAEM 1/2 AL LML TR
I o ARAT T SBRR B 1) B B PR R A R AR
1.2 EFAL PCR 1 Western blot 43 #f

I CTAB 31 P A= R T, AR 5% 56 B #k &
MR o g BOKE (R 2H DNA RSBk . 43 51 DAS
B E T g% (DAS-F:5'-CATTATCTAGACAT-
GAAGTTCCAC-3'/DAS-R.5'-TAAATGATTTT-
GATCATGTTTTGG-3") MDAK ) b Fiif (DAK-
F.5-CTGAAGGAAAGCTTGATCTC-3'/DAK-R.:



4 39 JATHE 5 5 DAS/DAK Je B R 2235 WA & 42 5 WOICRE 1 F 775

5'-CTACAACTTGGTTTCAGATTTG -3") #47PCR
PHE I DAS F DAK J PR 78 % 3 PR Ak 22 56 [H 40
SR R

J{ Plant Total Protein Extraction kit(Sigma) $}&HX
S AR AN B DR PR AR B R A SR . 1S
pg M SDS-PAGEHEE N 12%0) 4y B J5 ¥
% PVDF-P & b, 530l AR 22 BBk (Candida boidinii
S2) FI1EE 35 % £ (Pichia pastoris GS115) 1l 4% 1) KL &
F1(5 pg) N BAYEXT IR (PCKD L BifiJ5 i C. boidinii S2 FiI
P. pastoris GS115 ) DAS fil DAK & 4 (1 Rt 1
— PO I PR I A B IC Y R BT B BT
FIRBE 2 h, %K 5 A 1 mL Luminol/Enhancer
solution Fil 1 ml. CL Peroxide solution (PIERCE) , &
5], %A PYDF 5, 7R 8 UR & 48 F A Chemi-
doeXRS(BIO-RAD) Ml £ 5 ,
1.3 H“CHO.NaH"CO; #Fi2 5§°C-NMR 4 #f

HYCHO F1 NaH" CO, W F 2 CIL A #, |
& H¥CHO F1 NaH"™ CO, kb ¥ 7E 20 35 6 #:47 . A
TCR HE 95 1 R 2SR B Bt 2 g, T 2
mmol « L "% & H* CHO(% 5 mmol « L' KH-
CO;,0. 1% MES, W/V) 4b 3 B /4 Rl K 4 3% (H"
CHO/W'T) ik 5L PF K 23 4 #k PSKS (HY CHO/
PSK5)MF 4 hy /| 5 mmol « L™ NaH"” CO, (& 5
mmol « L' KHCO,,0. 1% MES) ¥ i 4b ¥ B /= 7
KA 3% (NaH"® CO;/WT) M F 4 h, PA & & i
H" CHOAb # ) B £F R K #2358 0t Jr 2 %) i/ (CKD
FEREA R, F 25 T =, 24 h C T 2
JRAE T (100 v« min ") BE 3, AL BRES R L 4350 FH 75
R TC I 7R TR b i 4~5 IR, K BRI i R sk
i H” CHO A1 NaH" CO, , JC 3 W 7K 48 W T M |7 %
T 5% B2 7K 43 R R BT — 80 “CUkAR#5 H

PC-NMR ZrAfr i F : B0 — 80 °C vK 46 Vi 47 1)
MR TEWR A P WEE L 3 mL 100 mmol « L' B2
R s (KPB, pH 7. O il 482 n % A = 9, &
K I # 3 min fHEK3E,4 C R 12 000 g
20 20 min, FIEWAHESRHE TG 0.5 mL
) KPB 2% Ml i 4 ‘CF 12 000 g B0 3 min, It
VR AL RE RS S I A S A S 5 %
*H,O(V/V) " C-NMR 43 # 78 A5 6 5 4% 1 1 Pz A
(DRX 500-MHz) F#F47 . i FHAHC S8 T - 584
T 2%, 5-ms (90°) ik o, 1% 9837 594 Hz, R AL I]
] 0.5 s, FEHFES ] 1. 2 s AF il I BE QR HF7E 25 °C L 1
ANRE i SR AE 32 000 ANEHE AL FHE 1200 Yk, A FEEL
PERTLE 55 4 Hz, HY CHO FRic ke i i Ak 22 07 5

Aef 2 1R FE ik B e Ji - L 4R 04 (166. 66 ppm) ., NMR
i rp L i e SR o A O Ak A Y C-NMR % 317 L
B E . FETHSRN AR A A AR ) AR R o B
H Ar e 06 DLk Jie ol 9 S 38R T 8L
1.4 MEmMBFMAE
1.4.1 X233 HCHO $E D K B A= BRn 4%
FEDUAE R PSKS 2l 8 F & A MS [ R K 75 31 B
FEMMN .25 °C 100 pmol « m 7 « s "FEEOE IR 2
J G R In A — A~ & 351 500 pL Y B0 IR
W30 pL 370/ HCHO R E X L&, BT
HCHO #% % # & . HCHO S AR AR TR 78 1 % P41 25 1]
AP 9 HCHO YA F) 48 pg » L' 4k%E
gt 15 d e M R A KRS RER A .
1.4.2 AZE(MDA) .H,0, fiIZEALE (PO &
W R B A RO AL SRR PSKS 4h i B T &
MS [ {4 1 3% 5L 69 % £ £ (370 mL) 4y 25 “C 100
pmol » m™* « s 'RFLL IR EE IR 3~4 JHAEM G, 1E
HAom A —4 L5 r 500 pl g0 8, WH 30 pL
37% HCHO Y& . fff HCHO ¥ ¥ ik 5 48 pg -
Lo Kb 24 h st i A & T —80 C
KE . B Gurel 25 1977 3200 F MDA il
PC &k, M Gay 1 1y il HO, &,
1.4.3 Sk HCHO fpi8 T X 2 #& HCHO W I 3 %
MRFLESEHNE HHEFETARERNE
R AR 0 R R B — B0 ) B A R R Ak R A
A —A~ =0 H 48 AR (59 X 40 X 48 em) 2 A . —
A BT AR 17 24 h HCHO Jipi8 40 2,
43 5F 8:00.13:00,18:00 Yk H 8:00 Fff #% X H
RERS I AY (PPM400 HTV, 3 [®) il & 4 F N 1Y
HCHO ¥ B . Ao A R B 19 25 46 8 X B8 (CKL )
[ ik FH 6 A 7 R &R 48 (CT-340, 35 ED il & M A
(S ALAE 38, DA [R) 6 BECRD 3LV B8 2% 1 1) A A0 BT
H R RE X IR (CK,)
1.5 #HE\EHZEITHW

FiA A B AR AR bR o BT E AT 3 RE R . M
Microsoft Excel 2003 #4347 50 A0 B FIVE & .
DPS 7. 05 ¥ AF k47 J5 2% 53 #r fil 2 5 b % (Duncan
PO F RS8N,
2 HiR550Hr
2.1 HERXEENLETE

S TR EAT Km BT 1 R A2 280 AR L R 4 v

EEEH B AR, DLEF A BRI G E 0 5% 35 DR AR
Z (PSK1.PSK4 1 PSK5) 3 [H 4 4 #i #g #: 17 PCR



776 [T A i N // M= S 35 &

g3 M. 45 R SR, B B I bk & (PSK1, PSK4 Al
PSKS) 0] LA ¥ 3% 4 5 FH 4 %F B (DAS/DAK ¢DNA
5% XO A TR A H A 454 (249 0.5 kb)), 1 B A= 1)
WA Y 3G WA AT S5l (B 2, ALB) L B DAS il
DAK JE[H ¥ 8 4l A S5 B bk R 9 BE A

poR RlNE RIS R iNE 7 L L E S & O
Western blot 43 #r 45 5 E£ W], 3 ¥k PCR FH M AH bk A1
FR A B (PCKD Hh &R RE A DU 21 JE #5581 77. 4 kD Y
DAS F1 66. 7 kD ) DAK {555 4% , 1M B £ 74 v %
A DU 3 AH B 15 5 A (B 2,C.D) . 3 3 NGt
K Bk & o PSKS H | (19 58 5] 19 32 35 7K °F fix 5 - PSK4
WZ w5 & PSKL, DL E45 30 DAS/DAK
FEITE X 3 N BE Ak & P B R W 2k I al LA
WX 3 R bR RFEATAMC Tl 2585
2.2 HERXEIEZR HCHO Rift =44 7

h T gt F ik DAS 1 DAK SR BB B i
HCHO [a] b & 12 /& & 76 5% e R 2~ g &
HCHOABE i #E AR R SCIEBR L DL H & 454 F
R K2R A HCHO & 42, C-NMR
A e T HY CHO/WT, HYCHO/PSK5 J¢
NaH"” CO, /WT Ab¥Ent 1) A8 3% I DL LT fi]
A 3L T A R R A S A R A Ry o BRCCIRO A T 1
F I 5 C-NMR {55 K7l B4 1 7 s H 58
W= P A & . B T i R ik DAS/DAK
FEEPOE i HCHO [ Ak & 12 5 R J- SCAE 5618
B, HY CHO/PSKS F1 NaH" CO, /WT 4b i H 1
RS RLIZ AL . LR 2 R R (F 3, HP CHO/
PSK5 5 NaH" CO;/WT Q{7 ¥y AR X 25 1 1 A2 1k
AL e Hh, xF [U-" C1Glue Cifj %5 B%) A1 [ U-"
CIFrucCRED AX &g R s (B 3, A, 5
CK #itt, H* CHO/WT b # iy B v [ U-" C] Gluc
FILU-"CJFruc X & &4 N T, AL U-"C]Gluc
T Wede B R (P<<0.05), R NCKIS57 %, 1] |,

PSK5 PSK4 PSKI WT PCK

A 0.5 kb

WT PSK5 PSK4  PSKI

-] -

DASDNA

B2 B R AR il AR N PR Glue #l Frue &
Wi HCHO i, i HY CHO/PSKS5 4b B F e
[U-"C]Gluc AL U-"C1Fruc A X5 £ 543 5148
Jy HPCHO/WT AbBEF 1. 86 1 12. 19 %, 1 B 1
Fik DAS fil DAK S ¥f HY CHO 19" C 48
PSR R SCHE 26 {80159 0 28 9 B 1 A i o
HYCHO/WT 431y 2. 85 %,

HE—2%F H CHO X1 5 22 77 1) 43 B 45 3
N5 CK A HYCHO/WT &b ¥t /s [U-2 C]
Cit(Fp B A X & 1t 5 CK WA B & M2 7 (P>
0.05, & 3,B), {HJ& H¥CHO/PSK5 4b B0t B
[U-"C]JCit (A8 X & & Lk HY CHO/WT &b 3 Fn
CK 5 5 2 b A (P<<0. 05, & 3.B). [1-°C]
Gly(H & #) W2l 5[ U-2 CICit 1L, 3 9
iRk DAS/DAK J K H| 55 T % KK 75 3% 3 i
H"CHO & i [U-" CJCit #1[1-" C]Gly By &
o tHJ, 72 HY CHO/PSKS Ab Bl o= A T
[ 2-¥C]Gly,[2-"CIMal GESR ) [ 3-7 CSer (£ %
i) [2-0 CIGlu (B &) . [3-¥ CIAsp (K& HR)
PLE3-PCIPACN AR % A HLIER (& 3. C), T 78
H"CHO/WT 4bHm F A1 CK A ok 22 347 46 %)
XA HILER L Ui B 4% B P R A4 g8 il i HY CHO 8,
7 AR X S LR IR AR A B 5
2.3 S HCHO BB THRERXZEZNEMER
XA b

Wi HCHO 15 Qe 2 LS BWIE N 7E. H
T % % 5 # 35 DAS/DAK 3t X K # 98 K {k
HCHO $tkiy 2 m . ] 48 pg » LS4 HCHO kb
LB A TR R S DR R bR PSKS AT 1 15 . 45 1
W LU R 09 28 KORAS e B A R B 5 e B
IG5 (K 4 X R W Rk DAS/DAK 1%
TR IEPUE BT SR HCHO B3tk

H. O, . MDA F1 PC 2 41 i 58 4k 352 473 18 7= 40« £E

WT PSK1 PSK4 PSK5 PCK

0.5 kb
DAS DNA

PSK1 PSK4  PSK5 PCK WT

B 4

2 DAS Il DAK BN TER RN R 8 G 53R B
A B FRREEPIH PCR A DASCA) I DAK (B) P 75 % B R bk 3 v 19 B 5 1 0L 5 €D 3R Western blot 43 #f DAS(C) #1
DAK (D) 5 [F 72 7% 55 PR bk & 7P i 32K 200 s WT. B 42 B s PSKIL PSK4 \PSK5. A [7) 5% 56 PRk 2 5 PCK. % 1]
Fig.2 Analysis of the integration and expression of DAS and DAK genes in transgenic lines

Genomic PCR analysis to detect the integration of DAS (A) and DAK (B) genes in transgenic lines;

Western blot analysis to detect the expression of DAS (C) and DAK (D) genes in transgenic
lines; WT. Wild type; PSK1,PSK4,PSK5. Different transgenic lines; PCK. Positive control
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¥ C-NMR analysis of H* CHO and NaH" CO, metabolites in wild type and transgenic plant

CK. Wild type; H¥CHO/WT. Wild type treated with 2 mmol « L' liquid H®* CHO;
NaH"CO;/WT. Wild type treated with 5 mmol « L~ liquid NaH"*COs3 ;
H"“¥CHO/PSKS5. Transgenic plant PSK5 treated with 2 mmol « L ™! liquid H* CHO;

Different letters indicate significant difference at the 0
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Fig. 4 The growth statue of wild type and
transgenic plant under gaseous HCHO stress

WT. Wild type; PSK5. Transgenic plant
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Fig. 5 Changes of the H, O, ,MDA and PC
contents in the leaves of wild type and transgenic
plant under gaseous HCHO stress
0 h/WT. Wild type;0 h/PSK5. Transgenic plant;24 h/WT. Wild
type treated with 48 pg + L™! gaseous HCHO for 24 h;
24 h/PSK5; Transgenic plant treated with
48 pg + L1 gaseous HCHO for 24 h
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Fig. 6  Analysis of the HCHO-uptake capacity (A) and stomatal conductances of wild type and transgenic lines (B)

A. Analysis of the HCHO-uptake capacity of wild type and transgenic lines in cabine;B. Analysis of the

stomatal conductance of wild type out-cabinet and wild type and transgenic lines in cabinet; CK;. Empty cabinet;
CK,. Wild type placed out-cabinet; WT. Wild type; PSK1,PSK4,PSKS5. Different transgenic lines
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