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Cloning., Expression Characterization and Subcellular Localization
of NtOSA1 Gene from Nicotiana tabacum
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Abstract ; Members of the activity of bel complex (Abcl) family are protein kinases that are functionally di-
verse proteins with multiple roles in the regulation of plant growth and development and abiotic stress tol-
erance. According to the amino acid sequence of AtOSA1 and the transcriptome data of Nicotiana taba-
cum , a Abcl like gene was isolated and designated as NtOSA1, as for the high identity with the AtOSA1
(Arabidopsis thaliana oxidative stress-related Abcl-like protein). The open reading frame (ORF) of the
NtOSA1 gene is 2 283 bp which encoded a deduced protein including 760 amino acid residues. The protein
sequence of NtOSA]1 possesses a conserved ABC1 domain, one kinase domain, one chloroplast localization
signal peptide and two transmembrane spans. The relative expression of NtOSA1 was determined by quan-
titative real-time PCR (qRT-PCR). The results showed that NtOSA1 gene was expressed particularly in
leaves, but also in flowers. After treatment of H,0O, and NaCl for 6 h, the expression of NtOSA1 in-
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creased to the maximum, which was 1. 95 and 2. 69 folds of the control, respectively. When fused to green

fluorescent protein (GFP), NtOSAI1 localized to the chloroplast in tobacco protoplasts, which was consist-
ent with the prediction results of the software TargetP 1.1 Server. These results suggested that NtOSA1

may be involved in response to oxidative and salt stress in tobacco.

Key words: Nicotiana tabacum ; oxidative stress-related abcl-like protein; gene clone; expression character-

ization;subcellular localization
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1 NtOSA1-R2 (5'-GTCGACAGCTGTTCCTGT-
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1 ATGGCGAGTATTTCAGCTACACTTTCCACTGCAACTCTACCAGAGCT CAAATTTCTGTGTTCAAATTCAGCTTCTAGAAGCTTCCGTGTA
1 M A ¢ I 8§ A TUL s T aAaTUL P EL K F L CBS NS A S R S F R V
1 CCGCTCTCTAGGTTTTCATCGCGTCGGCGCAGTTTGATTCGAATTAAGGCCGTGAATAGAGAACAGAGTGCCGTAGTGGAAGAGAGGGAT
1 P L ¢ R F & 8 RRUR S L IPRTIIKAVNUZ REESA AUV YV EETRD
1 GCGGAATTGCTGACGAAAGTGAACGEGTAGTGTGARTCCGAAGTGTGAAGAAGATCCATCATTTGAACGGTGCATTGT TAGTGGAGAAGTAL
€1 A E L V R KV N G S VNG S V K K I D DL N GATULTLVE K Y
271 ACGAATGGTAGTGTAGGTSTGAGTGAGAGTGAAALTCAGAGTTTGATGAAGTATGTGAATGGGAATGGGAATGGETGTAGCGGCGARGAGT
2 T N 6 8§ V 6 VvV S E § EN E S L M XK Y V N G N G N G V A A K S
361 AGGGACGAGGTTGTCGAGCTGAACGGCGGAAGACGSTGETTCAGAACAAGGACAAGAAGCACAGTCTAGAGGAGATTGCGACARGAGCGAAGCT
1212 R D E V V E V K A E E vV V E K K E K K g 8 Vv EE I G Q E E A
451 TGGTTTAAGAAGRAATGATCAAGTTGAGGTTTCTGTCCGGCCTGGAGGCCGTTGGAACAGATTCAAAACATATTCAACAATTCARAGGACT
151 w F K K N D Q V E V S v R P G &6 R WN R VF KT Y S T I © R T
541 TTGGAGATATGGGCEATCTGTTTTCACTTTTATATTTAGGGCTTGGCTGAATAATCAAAASTTCTCTTATCGAGSTGGAATGACAGASGCG
112 L B I w ¢ 8§ v F T F I F R A W L N N Q K F S Y R & G M T E A
631 AAAARAGCTGAGCCGAGAAAGGTACTCGCTAGGTCGTTAAAAGAAACTATTTTGACAT TAGGTCCTACTTTTATCAAAATTGGCCAGCAR
211 K K A E R R KV L A R W UL X ETTI L RULGUPTF I K I G Q Q
721 TTCTCRACAAGGGTGGATATTCTTGCTCAAGAGTATGTTGATCAGTTGTCTGAGCTTCAGSGATCAAGTTCCTCCTTTCCCATCGGRAAACT
241 F §$ T R V D I L &2 Q E ¥ VD QUL S EL DUV P P F P S ET
811 GCTGTATTAATAGTTGAAGAAGAACTTGSGGGSGCICATTGGGTGATGTATTTGAAACATTTGACCGTGAACCAATAGCTGCTGCAAGTCTT
2717 A VvV L I Vv E E E L G & F L G D V F E R F D R E P I A A A S L
901 GGTCAGGTGCATCCETGCAAGATTGAATGGGCAGGAAGTAGTTGTAAAAGTACAGACGCCCGGTCTTAAGGATCTTTTTGATATCGATCTT
3¢ G 0 VvV H E A R L N G ©0 E V V V K V O R P &G L K D L F D I D L
991 AAAAACCTGAGGGTGATAGCTGAATATCTGCAGARAATAGATCCTAAATCTGATGCTGCAAAALAGAGACTGGGTTGCAATATATGATGAA
331 K N L R V¥V T A E ¥ L ©0 K I D P K S§ D ¢ A K R D W V A T ¥ D B
1081 TGTGCAAGTGTCTTGTATCAGGAGATTGATTACACTAAGGAAGCTGCTAACGUCGAACTGTTTGCAAGTAACTTCAAGAACATGGATTAT
3¢l Cc A 8§ V L Y Q E I D Y T K E A A N A E L F A 8 N F K N M D Y
1171 GTGARAGTCCCARCGATATACTGGGAATATACCACACCACAGGTTTTGACAATGGAGTATGTCCCAGGCATTAARAATAAACAGGATACAR
291 v K v p T T ¥ W E Y T T P QV L TME Y V P G I K I NI RTIDQ
1261 GCCTTAGATCAATTGGGTSTTGATAGS. GGTTAGCGGAGSTATGCGGTTGAATCCTATCTGSAGCASATCCTGTCTCATGGCTTTTTC
427 A L D Q L. G VD PRKURULGUZRYA AV E S Y L E QI L S HGF F
1351 CATGCTGATCCACATCCTGGAAATATAGCTGTGGATGATGTCAATGGCGGAAGGCTGATCTTTTATGATTTTGGAATGATGGGAAGTATA
451 H A D P H P G N I A VDD VNG G RULTIVF Y DF G MMG S I
1441 AGTCCTAATATCACAGAAGGATTGCTGGAAACATTCTATGGAGT TTATGAGARAGATCCAGATAAGCTCGTGCAAGCAGCGATTCAAATG
481 ¢ P N I R E G L L E T F Y & VvV Y E KD P D K V V 0 2 A I Q M
1531 TGTTCTGETGCCTACTGGTGACATSACTGCTETCAGACGAACTGCACAGTTTTTCCTTAATAGTTTTGAAGAGCGCCTTGCAGCACAA
511 6 ¥v L v P T G D M T A V R R T A Q0 F F L N s F E E R L A A Q
1621 AGAARGGAGAGAGAAATGGCACAAGCAGAACTTGCGTTCAARAAGCCATTAAGCAAGCAGGAACAAATAGAGAAAAAGAAGCAACGSTTG
541 R K E R EM A Q A E L ¢ F K K P L 8§ K EE @ I E XK K K Q@ R L
1711 GCTGCAATTGGTGAAGATCTATTAAGCATTGCAGCAGATCAGCCATTCCGATTTCCTGCCACATTCACTTTTGTGGTTAGAGCATTTTCA
51 A A I 6 E D L L S I A2 A DOQUPF R F P ATUVFTUFV V RATF S
1801 GTTCTGGATGGCATCGGAAAGGGTCTTGATCCATZCATTTGATATCACCGAGATTGCCARACCCTATGCCCTAGAGTTGCTTAGGTTTCGT
6¢1 v L. D 6 I 6 K ¢ L D P K F DI TETIZ2ZI KU©PYAILETLTILIZ RFR
1821 GAAGCTGGTGTTGAAGTTSTGCTAAAGGACTTCACGAACASATGGGACAGACAATCTCGTGCATTTTACAACTTGTTCAGGCAGGCTGAT
31 E A G V E V VvV L, X D F KR NR WD R Q S RAPF Y N L F R QA D
1981 AGAGTTGAGAGACTTGCTGAAATTATCCAGCGATTGEAGCAAGGCGATCTTAAGCTTCGGGTTAGAGCTTTAGAATCTS, GGGCTTTC
661 R ¥V E R L A E I I Q R L E © G D L K L R V R A L E S E R A F
2071 CAACGTGTTGCAGCTGTCCAGAAAACTATTGGAACTGCAGTTGCAGLTGGAAGCTTGGTTAACCTAGCTACAATGTTGTATCTCAATTCC
691 Q R V A A V Q K T I &6 ¢ A V A A G § L V N L AT ML Y L N 5§
2161 ATCCGTATGCCTTCTATTATAGCATACGCTGTCTCTGCATTCTTTGGCTTCCAAGTCCTCTTTGSCCTTTTGAAAGTTAAGAAATTGGAT
722 I R M P 5 I I A Y AV C A F F G F ¢ VL F G L L KV K XL D
2251 CAACGAGAAAAATTGATCACAGGAACAGCTTGA
71 Q@ R E K L I T & T A *

A R I S A 7 5 5 K5 R IR 3R ABCL 254 1 s HLARHA 3R B85 IG5 15« R & %10
Bl 1 NtOSAL ) cDNA JF 51 Fo Ho A 3 10 & 56 )T 51
Chloroplast targeting pre-sequences are presented in bold; Underline represents the ABC1 conserved domain; Putative
trans-membrane spans are presented in bold italic; * Stop codon

Fig. 1 ¢DNA and deduced amino acid sequences of NtOSA1

e PR T R 7 9 B AT i B A — B (72,89 060) L [/ Il

NH; COOH
i 4 F NtOSA1 (GenBank % 5% 5 KU565475),
100 aa iy 44 ) 2 Kinase domain NtOSAT Fe[H Y ¥ 75 b 32 HE K B2 2 283 bp, 4 it
VIR OHE 1 Fe ABCL 26 bk ¥ 56 (5 HE 11 e M BlE 25 4 5 760 A HERL .
I (AR %3 15 5 4% g 3 KT NtOSATL 2 H B9 A 9 2 06 M SO e 1)
2 fHE NtOSAL % (1 F 45 om 5 E B I AE 2 5014 % NtOSAT %5 1 il B AL 1 i

Dark gray box, ABC domain; Light gray box, kinase domain;

G5 R 0 47 40 B A L 45 R B R - NtOSAL 2
S F ik 86. 07 kD, S 4 LS Ok 8. 925 7K & LR
FEBIfY 277 ~397 HA ABCL 454 3, 7£ 364 ~502
6% 488 nm. WG K 500 ~525 nm; Gk A BRIBAEL NOSAL 5 C o BA 2 B
%N 633 nm. I H 650~720 nm, G5k L TR FE R Y A Y 703 ~ 721 H1 726 ~

7T43CF 1.2) . KR IT K AS B AR R M E 4 A
2 HARSH MR Abel 2 155 NtOSAL B (1347 7 91 1
2.1 fAE NtOSAl EEEERFE IS4 XF. % B NtOSA1 H A5 B 78 i ABCL i 5F 25 # 35,

R 45 S R L 3RS R T BE S BRI OF AcOSAL (13D, 3R W NtOSAT J&F Abel KK

White barrels, predicted transmembrane domains

Fig. 2 Schematic representation of the NtOSA1 protein
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NtOSA1 Q CLEDIRERNERVI 61
AtOSA1 Q CLEDIRERNERVI 61
OsABC1 3 ELFDIRERNIRVI 61
SynABC1 E KLETIRRATREKI 62
AtABC1 LEA YANSIEJSIENWRRL 62
sccoQs Q VEESIDJeENSELML 62
NtOSA1 AFNLQKITEE SOGAKRONVAIYDECAS THREANAE 2 SNERNMDY VRS TIY 122
ATOSAL AENLQEVI)2y SOGAKROINVAIYDECAS TERALNSEJANNFEDLEYVE=SIY 122
OsRBC1 AEYLQEVI)2y SOGAKROINVAIYDECAS THRAFNAERESENFRENMDYVERET L 122
SynABC1  AQYFQN.H35W.GRGROWNGIYEECCK LEPERSALTJSRRNERGEDWVENRSRV Y 121
AtABC1 LN¥TNL.1J35G. . . . LELDRAIRVAKE EIBAVSQRHERILLSOTEGE s LVV 118
5ccoQs LTASSL.IJ35G. . . . LELDRTIANARTEME NERARLLQHEELALLEDDFLFESHVE 118

AtOSA1(At5g64940) F1 AtABC1(Atdg01660) %K [ #IR I+ ; OsABC1(0s02g0575500) 3% [ 7K 75 ; Syn ABC1(P73627) 3% [ 4E 134
ScCOQ8(EWHI18611. 1)k A g+t
B3 A NtOSAL 5 H AP ABCL %54 55 Lt X
AtOSA1(At5g64940)and AtABCI(Atdg01660)are from Arabidopsis thaliana ; OsABC1(0s02g0575500)is from Oryza sativa ;
SynABC1(P73627)is from Synechocystis; SCCOQ8(EWHI18611. 1)is from Saccharomyces cerevisiae

Fig. 3 Comparison of ABC1 domain alignments among NtOSA1 and other species

ST Synechocystis (NP_440992)

M Symechocystis (PT3627)

WSERE Crocosphaera watsonii (ZP_00517317)

W22 14 Cvanothece (ZP_01729725)

SEREE Nostoc azollae (YP_003722579)

LLHEH RN Trichodesmium ervthraeum (YP_722994)
RIGHE Lyngbya (ZP_01624307)

WL FF Arabidopsis thaliana (At3g07700)

IKHF Oryza sativa (0s09g0250700)

WL Nicotiana tabacum (KU565475)

100 100 U 1% Arabidopsis thaliana (At5g64940)
Sl KK Zea mays (ADB13188)
96

92 KA Oryza sativa (0s02g0575500)
SN Synechocystis (NP_442576)
Ui ¥ Arabidopsis thaliana (At2g39190)
UM 4% Arabidopsis thaliana (At4g31390)
U IT Arabidopsis thaliana (At5g24970)
A I+ Arabidopsis thaliana (At3g24190)
JUTE ¥ Arabidopsis thaliana (Atl g79600)
TN FF Arabidopsis thaliana (Atl1g71810)
IKHG Oryza sativa (0s04g0640500)
ST Arabidopsis thaliana (At5g05200)
[ I Arabidopsis thaliana (Atlgl 1390)
JLHE IF Arabidopsis thaliana (Atl g61640)
[ #WF % Arabidopsis thaliana (At1g65950)
U 9T Arabidopsis thaliana (At2g40090)
,7 UHIIT Arabidopsis thaliana (At5g24810)
67 I_|: Lt 3+ Arabidopsis thaliana (At4g24810)
100 T Arabidopsis thaliana (At5g50330)
,7 BRI B Saccharomyces cerevisiae (EWH18611.1)

100 JUHE ¥ Arabidopsis thaliana (At4g01660)
77

A Homo sapiens (Q8NI60.1)

100

9

5 5 LA R Bootstrap FEE 1 000 IAY B 17 JE
K 4 JHE NtOSAL 5 HE Abel 4 H Y R GEHE A
Values at nodes show the confidence level of Bootstrap replication 1 000

Fig. 4 Phylogenetic tree of the alignment of NtOSA1 deduced amino acid sequence with other Abcl proteins
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Fig. 7 Fluorescence microscope observation of NtOSA1-GFP proteins in tobacco mesophyll protoplasts
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