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Preliminary Exploration for Function of Cotton GhCDPK1
Gene under Drought Stress

TIAN Xiaohan, ZHANG Mengdan, PANG Xuebing, ZHU Jianbo, ZHU Xinxia"
(College of Life Science, Shihezi University, Shihezi, Xinjiang 832000, China)

Abstract: CDPKs(calcium-dependent protein kinases) are important calcium signal receptors and response
proteins, which play important roles in response to various abiotic stresses in plants, such as drought, low
temperature and salinity. To study the effect of cotton GRCDPK1 gene to drought stress, this study used
quantitative real-time PCR to analyze the gene expression under PEG stress. The results showed that Gh-
CDPK1 gene was up-regulated by drought stress. Moreover, plant expression vector was constructed and
GhCDPK]1 gene was introduced into tobacco by Agrobacturium-mediated leaf disk transformation method
to identify the gene function. The results showed that after drought stress, the water retention capacity of
transgenic plants was significantly higher than that of wild type plants; the contents of chlorophyll, pro-
line, soluble protein and the activities of POD and SOD in transgenic tobacco plants were higher than that
of wild type, whereas the content of MDA was lower than that of wild type plants. These results indicate
that GhCDPK]1 gene, as a positive regulator, was induced by drought stress, and over-expression of Gh-
CDPK]1 gene can enhance the ability of plants to resist drought stress by accumulating more osmotic ad-

justment substances, enhancing the activity of the antioxidant system and maintaining the stability of the
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Table 1 The primer used in this study
EIE/ER S R 2] I fig
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GhCDPK1-qF GGAGCCCATACTATGTTGC S b
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B 7 e
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Fig. 1 Analysis of GhCDPK]1 gene expression

under drought stress
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M. 250 bp DNA Ladder marker; 1. PCR ;=4
Kl 2 PCR =4y s ik |5l
M. 250 bp DNA Ladder marker; 1. PCR products
Fig. 2 The products of PCR amplification

M. Trans 5K DNA marker;1.2. FgYI =4 ; 3. Bk % g
&3 o4 R Y 3G ) 4
M. Trans 5K DNA marker; 1,2. Double enzyme digestion
products; 3. Plasmid control

Fig. 3 Double enzyme digestion of recombinant plasmid

WT Linel Line2 WT

Linel

2.4 HREREEREESH

2401 TEBETHERMEERITNL WK 6
IR IR R AEROIRASTR W B 2k DRk SR AR R I - B B 2R
TR 6.4 A 5 W K i 39 9 JC I Ik 22 S o {HUBg 38
9 dJ B A R B LR b i B 2R RS B
B T B DU RR R i R R 2 RN R
piE 12 d. B AR A R bR 25 RS L I e e IR R
R I T EE SR R AR SRR (A 6,
B) s 52K 1 d - B A TR0 08 e T AR k24 L B A L e
HE N PR AR K REAF B — € K AL TR 4 kot A T 4R 58
e 6.C) . A UL 5 GRCDPK1 % [ 4
AR 5 30 S rh R B S A P

M123 456 789101r121314 15161718 19

M. 250 bp DNA Ladder marker;1~16. %% %k P FE#k ;
17~19. Bf A RUAE
4 SRR E PCR i
M. 250 bp DNA Ladder marker;1—16. Transgenic plants;
17—19. Wild type tobacco

Fig. 4 PCR identification of transgenic plants
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Fig. 5 RT-PCR identification of transgenic plants

Line2 WT Linel Line2

A IEHARRSME B, Wik 12 d; C. &K 1 d;Linel \Line 2. 2 ASAS[a] Bk £ 5% 56 K A0 &
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A. Normal states of WT and transgenic tobacco; B. Withheld watering for 12 d; C. Recovered for 1 d;

Line 1 and Line 2. Two different lines of transgenic tobacco

Fig. 6 The phenotypes of WT, line 1 and line 2 under drought stress
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% and * x indicate significant correlation at 0. 05 and 0. 01 level, respectively

Fig. 7 Physiological analyses of WT and GACDPK]1 tobacco measured under drought stress
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