红芽芋驯化苗对盐胁迫的光合及生理响应
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江西省科技厅2012年农业科技支撑项目(20122BBF60126);2013年度江西省高等学校科技落地计划(KJLD13088)


Photosynthetic and Physiological Responses of Red Bud Taro Transplantating Seedlings under Salt Stress
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探讨江西铅山红芽芋的耐盐机制,以其组培移栽驯化苗为材料,研究了盐胁迫对其生物量积累、光合特性、荧光特性等抗逆生理特性的影响。结果表明:(1)红芽芋幼苗生物量和根冠比在低盐胁迫下(50 mmol·L-1)得到显著促进,而在高盐胁迫下(100~250 mmol·L-1)受到显著抑制。(2)低盐胁迫幼苗的净光合速率(Pn)、气孔导度(Gs)、气孔限制值(Ls)、水分利用效率(WUE)和瞬时羧化效率(CUE)比对照(0 mmol·L-1)显著增加,细胞间CO2浓度(Ci)比对照显著下降,蒸腾速率(Tr)与对照无显著差异;高盐胁迫幼苗的PnLsWUECUEGs较对照显著下降,Ci比对照显著增加。(3)低盐胁迫幼苗的最大荧光(Fm)、PSⅡ潜在光化学效率(Fv/F0)和光化学猝灭系数(qP)比对照显著增加,初始荧光(F0)较对照显著下降,PSⅡ最大光化学效率(Fv/Fm)、PSⅡ实际光化学效率(ΦPSⅡ)、开放的PSⅡ反应中心捕获激发能效率(Fv′/Fm′)和非光化学猝灭系数(NPQ)与对照无显著差异;而高盐胁迫幼苗的F0FmFv/FmFv/F0、ΦPSⅡFv′/Fm′和qP均较对照显著下降,NPQ比对照显著增加。(4)各盐胁迫幼苗叶片的可溶性蛋白含量以及过氧化物酶、超氧化物歧化酶和过氧化氢酶活性与对照相比先升后降,并以低盐下最高;可溶性总糖和脯氨酸含量均比对照显著增加;丙二醛含量和质膜透性相对值在低盐胁迫下无显著变化,而在高盐下显著增加;叶绿素含量和根系活力在低盐胁迫下无显著变化,而在高盐胁迫后开始显著下降。研究发现,江西铅山红芽芋移栽驯化苗的耐盐阈值为 50 mmol·L-1,其能够诱导提高叶片可溶性蛋白含量和主要保护酶活性,稳定质膜透性、叶绿素含量和根系活力,增加PSⅡ潜在光化学效率,提高PSⅡ的电子传递活性,维持PSⅡ实际光化学效率,有效启动非辐射热能量耗散机制来保护了光合机构,最终提高净光合速率,增加生物量。

    Abstract:

    The photosynthetic and physiological responses of Jiangxi Yanshan red bud taro (Colocasia esculenta L.Schott var.cormosus cv.Hongyayu) transplantating seedlings under 50,100,150,200,250 mmol·L-1 and 0 (CK) of salt stress were studied using its transplantation seedlings.The results showed that:(1)The biomass and root shoot ratio of seedling increased under low salt stress (50 mmol·L-1 ),and inhibited under high salt stress (100~250 mmol·L-1).(2)Under low salt stress,the photosynthetic rate (Pn),stomatal conductance (Gs),stomatal limitation value (Ls),water use efficiency (WUE) and instantaneous carboxylation efficiency (CUE) of seedling significantly increased compared with the control (0 mmol·L-1),its intercellular CO2 concentration (Ci) decreased significantly compared with the control,and its transpiration rate (Tr) had no significant difference compared with the control.Under the high salt stress,Pn,Ls,WUE,CUE,Gs and Tr of seedling decreased significantly and its Ci increased significantly compared with the control.(3)Under low salt stress,the maximal fluorescence (Fm),photochemical quenching coefficient (Fv/F0) and photochemical quenching coefficient (qP) of seedling significantly increased compared with the control;initial fluorescence (F0) decreased significantly compared with the control.PSⅡ maximal photochemical efficiency (Fv/Fm),actual photochemical efficiency of PSⅡ (ΦPSⅡ),open PSⅡ reaction center capture the excitation energy efficiency (Fv′/Fm′) and non photochemical quenching coefficient (NPQ) had no significant difference compared with the control.Under the high salt stress,F0,Fm,Fv/Fm,Fv/F0PSⅡ,Fv′/Fm′ and qP of seedling decreased significantly compared with the control;NPQ increased significantly compared with the control.(4)Under salt stresses,soluble protein content,peroxidase,superoxide dismutase and catalase activities of seedling increased first and then decreased compared with the control,reaching the peak at 50 mmol·L-1,while its content of total soluble sugar and proline were increased significantly compared with the control;its MDA content and plasma membrane permeability had no significant change at 0~50 mmol·L-1 and began to increase significantly from 100 mmol·L-1;its chlorophyll content and root activity had no significant change at 0~50 mmol·L-1 and began to decrease significantly from 100 mmol·L-1.The study indicated that Jiangxi Yanshan red bud taro transplantation seedlings salt tolerance threshold was 50 mmol·L-1,which could promote the increase of the soluble protein content,the activities of peroxidase,superoxide dismutase and catalase;maintain the membrane permeability,the chlorophyll content and root activity;increase PSⅡ maximal photochemical efficiency;improve the PSⅡ electronic transfer activity,maintain actual photochemical efficiency of PSⅡ,waste excess light energy as heat by the effective starting non radiative heat energy dissipation mechanisms,thus protect the photosynthetic apparatus,and ultimately enhance net photosynthetic rate and increase the biomass.

    参考文献
    相似文献
    引证文献
引用本文

洪森荣,尹明华.红芽芋驯化苗对盐胁迫的光合及生理响应[J].西北植物学报,2013,33(12):2499-2506

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-12-30
  • 出版日期:

微信公众号二维码

手机版网站二维码