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Analysis of Differential Expression Genes in Dongxiang Wild Rice

and Its Introgression Lines under Phosphorus-deficiency Stress
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Abstract:In the present study,the phosphorus-deficiency tolerance introgression line 11.171 and its parents
(Oryza sativa cv. ‘Xieqingzao B’ and Dongxiang wild rice) were used to investigate the differential expres-
sion genes at early seedling stage by cDNA-AFLP technique under the phosphorus-deficiency stress condi-
tion. Real-time fluorescent quantitative PCR was used to verify the differentially expressed genes. (1)cD-
NA-AFLP analysis revealed that numerous cDNA fragments (20—159) were obtained in each material un-
der the phosphorus-deficiency condition compared to the control (normal phosphorus level). (2) Compared
with ‘Xieqingzao B”,36 and 61 ¢cDNA fragments were differentially up- and down-regulated in IL171, re-
spectively. In Dongxiang wild rice line,79 and 136 ¢cDNA fragments were differentially up- and down-regu-
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lated, respectively. Further analysis showed that 11.171 and Dongxiang wild rice shared the same expression
pattern at 13 up-regulated loci and 15 down-regulated loci. (3) Among the 60 recovered and sequenced
TDFs (transcript-derived fragments), 50 of them were obtained and their functions were determined
through Blast search against the RAP-DB database. The functions of them were grouped into eight classes,
including energy and metabolism, regulating genes, signal transduction and transcription factors et al. (4)
Six above functional genes were subjected to real-time fluorescentquantitative PCR (qRT-PCR) analysis
which was all in agreement with those of the cDNA-AFLP analysis,comfirming that cDNA-AFLP was reli-
able in detecting differentially expressed gens involved in responding to the phosphorus-deficiency stress.
The results in this study suggested that partial alien DNA fragments of Dongxiang wild rice related to
phosphorus-deficiency tolerance has been transferred into the introgression lines and they could be acted as
excellent bridging germplasm in exploring and utilizing the phosphorus-deficiency tolerant genes in rice. In

additon, the introgression linses derived from Dongxiang wild rice can be used a good experimental system

for understanding the molecular mechanism to tolerate phosphorus-deficiency stress in wild rice.

Key words: Dongxiang wild rice; phosphorus-deficiency stress;cDNA-AFLP;qRT-PCR
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Table 1 Sequences of qRT-PCR primer

2|1 2|1 % %1 Primer sequences (5'—>3")
Primer 1E 1 Forward JZ 1] Reverse

Actin ACATCGCCCTGGACTATGACCA GTCGTACTCAGCCTTGGCAAT
TDF8 CCTCCAGTTAGAATTATCGTTGCT ATCCAGCCATAGTTACTCCTTCAC
TDF15 CTCGTCGCCTACATTCAGAAG GAAGCTTGATGATGGTCTCCTC
TDF18 AAAGAACGAGCCATCCATACTAAG CATAACCGACACCTGAAACAGTAG
TDF23 GCTAGAGATGTACGAACAACGAAA ACTAGCGTATGGACCTAAAAGTGC
TDF26 ATCTATTCGAGGATCGTTTCACTC ATCTCAAGCTCCACATAGACATCA
TDF61 TGGAATACACCTGCAGAACTCTAA ACAGTAACATTGGAGACACATGCT
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Fig. 1 The electrophoresis results of total RNA(A) and PCR products amplified by Actin primer form ¢cDNA(B)
M. Marker; G. Genomic DNA;C. cDNA
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Fig. 2 Parts of cDNA-AFLP amplification and electrophoresis for phosphorus-deficiency

tolerance introgression line and its parents

CK was control at normal concentration of phosphorus; M. Marker; A and B was specicial

up-regulated and down-regulated bands (arrow showed) ,respectively
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Table 2 The differentially expressed characteristics of low phosphorus tolerance introgression

lines and their parents under the phosphorus-deficiency stress

PRI e

The number of differentially expressed bands

IL171 FAR & B A7
A 2 5 A

ol N BNl
%e}j]t?zelft Fi'i%e}\:ijgn Co-expressed bands
L ~Xpress XB DWR 1L171 in IL171 and DWR
time/d type
I Leaf # Root i Leaf 2 Root I Leaf # Root I Leaf # Root
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3
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6
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+ 42 42 69 (48) 159 (35) 33 (18) 48 (12) 2 2
9
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Note: + means up-regulated express; — means down-regulated express. XB. Oryza sativa L. cv Xieqingzao B; DWR. Dongxing wild rice; IL171, Introgression

line IL171; The data before brackets was the number of differentially expressed bands between treatment and control,and in the brackets was the special differentially

expressed bands campared to XB. The same as below.
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T BYA B TLA71 A AR R 45 B ) 4 5 F 1 3%
IR 4y B R 97 F 65, AR & BF A FE 4 R
166 Fl 145(F% 2, & 2) . FNBRAS [ B:F 1] 5 4% 85 &2 11
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Table 3 The bioinformatics analysis of partial differentially expressed fragments
J¥ 5 4 5 223/ K5 R LB Efd
TDF No. TDF source Gene ID Annotation Similarity/ % E value
~pre DWR A (3~9 d) . 200 0T 7R R It 2 T
IDFS Leaf of DWR (3~9 d) Os0710637300-01 Similar to pyruvate dehydrogenase kinase 88 2.80E-20
- IL171 AR 9 D - - 2T P-type R2R3 # Myb & [ H Bt .
TDFI5 Root of IL171 (9 d) 0s0410594100-01 Similar to P-type R2R3 Myb protein (Fragment) 93 7. 40E-14
IL171 (9 &) e KT M % P450
TDF17 Leaf of IL171 (9 d) 0s01t0349800-01 Similar to cytochrome P450 80 0.00016
e DWR IO d) y {RE A % 3 11 5 B3 .
IDF18 Leaf of DWR (9 d) 0s0410442000-01 Putative transcriptional factor B3 89 7. 40E-24
DWR 51 (9 d) o ) TAFIISS 57 X B9 4545 6 1 :
TDFL) Leaf of DWR (9 d) 0s0510347000-01 TAFII55 protein conserved region domain containing protein 82 4. 60E-16
DWR {1} (6 d) . ; TRSTBUE  E 50E-
TDF20 Leaf of DWR (6 d) 0s12t0619700-00 Conserved hypothetical protein 9z 1. 50E-18
IL171 1 DWR fJAR (9 d) - 2l F nepenthesin-1 K & 2 iz 4 [ i I
TDE21 Root of IL171 and DWR (9 d) 0s02t0720900-04 Similar to Aspartic proteinase nepenthesin-1 % 2.50E-22
- ILI7L M9 &) - . WIREA R DUF952 % 5% A _
TDFZ5 1 Gt of IL171 (9 d) 0s0310564200-01 p, 4 inof unknown function DUF952 family protein 87 9. 60E-02
DWR (6 d) ! : R FREEREA R _
TDFz6 Leaf of DWR (6 d) Os1210176800-01 Similar to Heterochromatin protein (Fragment) 100 2. 00E-38
DWR 51 (9 d) 579000 SRR REEEA
TDF27 Leaf of DWR (9 d) 0503t0572500-01 Multi antimicrobial extrusion protein MatE family protein 69 0.018
DWR fym (9 d) E40E . B4 45 RING/FYVE/PHD 2K B 45 # 3  1 3
TDFZ9 1 af of DWR (9 d) Os0510564300-01 7 inger, RING/FYVE/PHD-type domain containing protein 7 3. 30E-20
rpaa L1710 HIALCO D . ELT 408 BHAR T S4 -
TDE33 " Root of IL171 9 d Os040662100-01 Similar to 40S ribosomal protein S4-like 9 L ovE-22
1L171 fyuf . ’ AR T 454 S AR R 1 _
TDF34 Leaf of IL171 0s07t0541500-01 Similar to KI domain interacting kinase 1 9 1. 60E-13
1L171 1 DWR f11(9 d) ) : o) T UL e 45 1 45 Hy 3R R 3
TDF36 Leaf of IL171 and DWR (9 d) 0s0510345400-02 Tetratricopeptide-like helical domain containing protein 96 2.T0E-09
DWR IO 0 S 5 0 R L 097 9 0 4 CECS. 3.
TDF39 3 0s07t0546000-01 3.2) i B Similar to Isopentenyl pyrophosphate: dimethyllallyl 92 0.33
Leaf and Root of DWR (9 d) . -
pyrophosphate isomerase (EC 5. 3.3.2) (Fragment)
T LV B FAD (K811t — B B8 A U £
TDF41 Root of IL171 and DWR (9 d) 0s01t0328700-01 FAT)f_dcpcndgnF pyridin_c nucleotide-disulphide oxidoreductase 97 8.60E-16
domain containing protein
DWR #1G3 0 XK F4HE ADT T4 B Similar to GATB (GLU-ADT SUB-
TDF42 J . 0s11t0544800-01 UNIT B) ; carbon-nitrogen ligase, with glutamine as amido-N-do- 94 9.90E-10
Leaf of DWR (3 d) ) ; > Rk .
nor/ glutaminyl-tRNA synthase(glutamine-hydrolyzing) / ligase
IL171 1 DWR fgif(9 d - R, .
TDF49 Leaf ofHIILNl aE{i E(WR )<9 D 0s02t0615500-02 B8 57 22 K Hypothetical conserved gene 96 0.087
- DWR R 6~9 d) | RUTEAMB LN RLEA -
TDE50 Root of DWR (6 d ~9 d) 0s10t0200000-02 Similar to protein kinase domain containing protein, expressed % 0.039
smpes  IL171 1 DWR 4R (9 ) . . K F UMP-CMP 6 % 15 % 1 .
TDF52 Root of IL171 and DWR (9 d) Os0610203500-01 Similar to UMP-CMP kinase family protein 100 1. 00E-109
1L171 fl DWR {1 (3~9 d) PO A b TF R T TFID T3 1 -
TDFS9 Leaf of IL171 and DWR (3~9 d) Os0610645800-01 Similar to Transcription initiation factor TFIID subunit 1 100 5. 00E-42
IL171 H (6 d) PP A T2 LB R 4 PG2 )
TDF61 Leaf of IL171 (6 d) 0s0110636500-01 Similar to polygalacturonase PG2 I 4E10
DWR I (3 d) ; ; KT 2 &8 AR E H = O0F-
TDF62 Root ofDWR (3 d) 0s09t0466900-02 Similar to Serine-threonine protein kinase 88 5. 00E-28
DWR 19 d) ) ) M F NB-ARC & A - :
TDF64 Leal of DWR (9 d) 0s12t0209800-01 Similar to NB-ARC domain containing protein,expressed 88 5. 00E-20
- DWRgnF9 d . 556 RS 10 kDa (92 ik M-SR 4  14 25 B :
TDFG5 Leaf of DWR (9 d) Os0710147500-01 Similar to photosystem [l 10 kDa polypeptide, chloroplast precursor 100 4. 00E-83
1 N L . . .
TDF66 Ez)lozlo?ﬂgl(fl d()6 D 0s11t0265000-01 JRAF ¥ % i % 1 Uridine kinase family protein 100 1. 00E-56
DWR 1 (9 d) . 22 AR/ R AR OB G Y 25 ) B R 1 )
TDF67 Leaf of DWR (9 d) Os0110784700-00 Serine/ threonine protein kinase-related domain containing protein % 1. 00E-08
peee DWR BRI (3 d) 200- B T & A 7 -
TDE68 | caf and Root of DWR 3 d Os0310690700-00 Conserved hypothetical protein /4 2E-10
e TL171HIRR 9 & . . ThEE A A 9 DUF250 45 1 50% 19 .
IDF75 Root of TL171 (9 d) 0s0510215800-01 Protein of unknown function DUF250 domain containing protein 100 3. 00E-131
§ 53 2 -115- XA
TpF7g DWR IS d) 0s081024080001 3 MIIEALAAEA P 115 ABP % ) 100 1. 00E-91

Leaf of DWR (3 d)

Similar to Actin filament bundling protein P-115-ABP

T+ o 4555 v IS 6] g AR 200 ORE I ) A

Note: * The time in the brackets was the different treatment under phosphorus-deficiency stress.
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Fig. 3 Functional distributions of sepecial differential
transcriptomes by ¢cDNA-AFLP analysis
A. Unknown genes;B. Energy and metabolism related genes;
C. Regulating gene expression related genes;D. Signal transduction
related genes; E. Genes of unknown functional proteins;
F. Transcription factor related genes;G. Material transportation

related genes; H. Disease resistance related genes
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Fig. 4 Real-time PCR analysis of the differentially

expressed genes in Dongxiang wild rice and

introgression line with phosphorus-deficiency tolerance
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