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Progress on the Functions of ARF5/MONOPTEROS(MP)
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mal University,Chongqing 401331, China)

Abstract: Auxin response factors ( ARFs) are key mediators of auxin responses, of which ARF5/
MONOPTEROS(MP) plays a role in the regulation of many growth and development processes in Arabi-
dopsis. In this article, we review recent progress in studying the regulatory functions of ARF5/MP, with a
particular emphasis on its roles in mediating auxin signaling in hypophysis specification, vascular develop-
ment and shoot apical meristem maintenance, as well as the structural and functional conservation of
ARFs, thus provide a valuable reference for studying the molecular mechanisms of auxin signaling in
plants.
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DBD (DNA binding domain) is composed of three parts: DD
(dimerization domain) is formed of the region N- and C-terminal
to the B3;B3 domain seems to be inserted in DD; AD (ancillary
domain) tightly interacts with DD*J, MR (middle region)
acts as activation domaint**'"), Domains [ and IV
also termed CTD(carboxyl-terminal domain)[!!)

Fig. 1 Protein structure of ARF5/MP
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A. Hypophysis specification: White ovals and arrows represent ARF5/MP mediated auxin signal from pro-embryo cells to hypophysis
transported by MP-dependent mobile signal TMO7:23:33) ;black arrows show the auxin transported to the hypophysis through
PIN1 promoted by ARF5/MPE4!, These two aspects stand for a noncell-autonomous auxin response; while lilac ovals represent
other ARFs and Aux/TAAs,such as ARF7 and TAA10,acting cell-autonomously in the suspensor cell during hypophysis specification ! ;
B. Vascular tissue development:During vascular growth and patterning in embryo, MP-mediated auxin signal is translated by TMO5/LHW,
the heterodimmer controlls CK (cytokinin) biosynthesis through LOG4. This genetic network controls the periclinal divisions of vascular
cells throughout the vascular growth and patterning processest*?);C. Cotyledon separation and SAM formation: ARF5/MP
and PIN1 both influence the auxin distribution,the positional auxin signaling may need other factors as well as ARF5/MP to promote
the CUC1/CUC2 expression,which would contribute to cotyledon separation and promote STM expression in SAM initiation[2-*4J ;

D. Maintenance of SAM:PCN may act as a co-repressor with IAA12/BDL to suppress ARF5/MP activation in the absence of
auxint?’J, When response to auxin, ARF5/MP is released from PCN and IAA12/BDL,and involves in the
WUS/CLV3 network by repressing the expression of ARR7/15,which are negative regulators of CK signaling !

Fig. 2 Main processes involve ARF5/MP in growth and development in Arabidopsis
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