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Research Progress of Abiotic Stress Induced Epigenetic Variation in Plants
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Abstract ;: Because of sedentary life style,plants can not avoid bad environmental stimulus,hence need to de-
fense and avoid environmental stress through their own defense mechanism. Epigenetic plays an important
role in regulating plans response to environmental stress. This paper summarizes the current research sta-
tus of epigenetic variations of plants induced by abiotic stress,including DNA methylation, histone modifi-
cation,chromatin remodeling and non-coding RNA. We are expecting to exploit epigenetic changes improve
the stress resistance of plants.
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Conrad H. Waddington F 1939 4F £ ¢ BLAX 5t 1% =
SISO B, 1942 4R il BT UK 2 W 8 AL F e
SRR G AR R BRI, B
A B WO KR L 20 4 70 AR H B, Holli-
day X} “FWMs L7 HAT T R KA BIFE DNA J¥
GNAN I HE B ARG B0 T o & AE R AT 3t A% 1Y) 2 TR
AR i EL 28 00 38t 4% 78 S vl il il A 22 4 Bk
WA F AL R — Y ML 2 A
DNA AL | 41 & (1% 4 . 4 8 5T 5 %8 Fil /b RNA
L, AR, B T R AR R AR AR A
JiiiE TS B Y DNA L ALK | R A AR =X DA
N 2R B B A A e A A8 A DT 52 i 5 PR 3 36 il A
VIR BB A% 3 B sl HE AR A ROPR BT LR A7 b A K R
H. AT DNA H AL 4 8 B i G o it 55 9
ARSI RNA 845 45 Jy 1 &) 22 B3R 1 AR £ e
XoJ AL ) 2 L 358 A% ] 45 04 5 i e L o i e

1 DAN HJEAl

DNA H AL 48 16 L4 i 1k Bl (P 2 3% il ) 1Y
TERR F SRR H 2R b iy — > F 5% 58 3 i
WAWE [ 5 LBk B b AT T B 5-HY KR Y g
GmO) W BN . YA E R R K SmCL AR
P R A [, Hu B R A7 6% ~ 2506 Z )t
TEAR W) s DNA g ms ig B OBE fb i o & 2B 7E CpG,
CpNpG (N 7R A A il £) Fl CpNpN AL g CR X Bk
AL N AR A,C s DM, DNA B I B4 2
P AL, — B & M Sk B 3 fb (de novo methyla-
tion) , Bl 2 254 34 K HH BL AL ) DNA 4 F 4k 5 o —
Fh 2 4k 47 B 3 fk (maintenance methlation) , B $ 4%
DNA ) — 55 O & AR WAL, ) — ZR R B AL 1Y
BECE R AT D P S, BT8R BRI
CpG F1 CpNpG i s A HY Ak 8 2o FH 2 Ak 48 15 B
SE L T AEXS R CpNpN A7 b 25 28 DNA & il 15
HEAT ISR BB ARE Y R R R AL T 2R )
() H AL e B W Sk 4+ . MET1 4k 85 CpG 7 i 1)
H AL . CpG i 1y HY LA i B2 g s CMT3 2 46 W)
T S Pk WAL 38 4ERF CpNpG o7 53 i H 4k 5
1M CpNpN A7 5 (1) B AL G 1 RNA 45 519 DNA
H 3 fk (RNA-directed DNA methylation, RADM)
IWARRGERE . DNA H I Ak 7 18 42 R 1) 1 25 36
NS T (Y TSR K7/ ICI B TR UL e Y 4
2 EAAE R AR K 8 B B AS [a] 36 58 T A
KM F L, M IE Y GGG B
TR RE CES R SRR Y e # ek 5

DNA Jifd 5 i FEE Ak 7 228 Ak R ] 42 Jp 301 107 257 5 P f)
5 DT $ 5 A ) 0 A R IR BE e, DLORTIEAR )
EFHAEKRKE .
1.1 SEHEMTEETH DNA FEL

o R 23 0f AE ) 3 S A A R T b AE L A
YA A8 3% He A WK IR X EE 2 8 A 4 B
7K s DT 52 e A ) 1 TE 8 AR SRR A AR K kL P E
W2 FEAEYIIE T . B, a5 T 5 e
MITE& A . Gianpiero 2870 X £ i 52 i ol =2 K
DNA B ALK 1 0 58 22 W < T 67 il S FF DNA
AR K P R AIG T 3R BOURPE A Bk DNAHT R R oK
I, FEAECD O T AR in b S L1 AR %)
B DNA HTEE AL 28 fb (15 00 . 45 SR 3R 0. 5 0 B
FoL 2 AE g i A 2 4.8.12 h )5 B JEAL KR 43
FIFEAL T 4. 7% .0. 8% Fl 0. 5%, #i4€H . DNA H
SR KT BEER 301 55 B (% 1400 T B AT . A v AR B
EFNE A T 4HEE F NtGDPL(glycero-phosphodies-
terase-like protein) #i 1% ¥ 31 fY) DNA F 3 4k 7K F %
G a3 55 7 2 Ak TR ) B SR 52 DN BE A 1Y 30
P AR A SCHR AR A 0 1 30 TS SO B A R
AR b T 0L R R S R A IR AL R e IR
SEL25) T A AU 389 &2 25 M (methylation sensitive
amplification polymorphism, MSAP) 1 = % & AH (4 3%
(high performance liquid chromatography, HPLC) J5
BT T KRBT 0158 3 A& DK106 Al T+ 5 Uk
B mIZEA TIR64 76T 50 A 5 DNA H 4L 42 1k
AT ol 25 R ERW KR EBE AP LYAH 20001
CCGG B &A= 1 Mo ws e B Ak, T 5 B3l 5 2
DNA H 3 Ak - 2 7K 8- 3 3 m . 3 A8 A 45
& A T DNAHTEE Ak 7K S FIR 25 7E i i ]
FAE2E 5 H A R 2R . Wang %5
WHFE T T 5 3E X KA P 4H DNA B B4R 7K P 1Y
AL BRI T B A AL PR S  JK RS M RTAR
() DNA HIEAL A5 FRET 1. 492080 0. 415, )
R 37 H A DA A8 25 BB Al S 70 e w107 6 13 36 7 — o o0
B M AL HLH] . Tang 2557 7F B 22 50 6F 58 o
RBT 5 3E w3 EUE 4 DNA F ALK PR
R, 500 HEAH bL L B B 8 DNA ALK R R
T 10.28% ., fEFEE T R 35 DNA AL
HKOFHE NS . Liang %5 & 3L b 46 T 5 B 30 4b
PG . B3 2 kb, FUiF 2 kb A &2 51 A it s g H
FEAG K- 8 T 5] ) & BB SRR AR A3 AL (transcrip-
tional start site, TSS) [ 10 bp &b iy B 3 A6 317 il
L3k 1 TSS EiiE 100~2 000 bp DL K 3 A
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By A ma 2 B SE A0 K OF B A 0 X B 2z Y S
PRI # J2 AllE FR 2R Ak 11, 80 96 Jiz =X BY 422 1) 3 R J2: R 251k
. BeAhAET S E .1 15658 £ W T 5 H 51k
FIE R 223K 7K1 19 F B AH G L T 690 TFs | 5 F gk
A T I B 22 38 KT 1) 14 0 AH OG5 33 156 Bl 3k 26 A it [
F(TEOTET 5 W8 15 5 DNA H B AL AR b ke &
TR, RSN BT R B S, R
FEP AL SAE K- R T 1,050, & 4R B 3k k)
2 F B AR AR AR I 57 153527, 58 Y6 [ IF 4 Y 4 J3E ]
RETERE X WA T SahERmEEN. Rk
B, 4 R 9 2% 2 T v R R T S 20 SR BT I A 4 nT 3
it DNAH LA A2 H L AL VR O 9 4 40 G R 1Y)
5 DA 808 A RIS . Rl — A AR R ) &
By BESAS [R) R 0 76 N [ 560 B 1) 1 55 24 35 e 3 %) )
R DNA H AR K T B AT AR R A T R a3
Jir. DNA HUJEAR 55 2 BBk 24 0] 4 5 48 4 X 1 6
AT SR 043 1 1 o A A R O R AR K R
B I R) e R A AR ALK T A B 50 T g — 2P
WA
1.2 E£ERMES DNA BE

4 JE W38 W RE (A 4 1 DNA AR K A AR
s DTS5 B0 JAE 7 R0 L R ) 383k kAR ey . E 4
iR Tl 360 %o L £ 5 )R] 4 A R R0 £ 1 AN [ AN [
Massimo %51 ¢ T 4% R 8 % Il 32 35 H 41 DNA 3%
AR Ak F I 5 v & B B U 38 3 0T 9 32 DNA JifY
g W L AE KO- 4 3 PR A v R A/ 2 R A R B
P& A 1 L[] B 26 W] DNA 38 A4k 1% 728 4k 5 701 & A
Ko LALLM PSS DNA MK IEEE, 4
4 22 %Y MSAP BR 00 T A B AR T b Sk
P20 DNA L A6 AR £ 1 5% i) 45 5 3¢ B 72 VR B Oy
50,250 1 500 mg/L W& MrA T, 85 N34l H
FEAC A 1 22 35 1 4 IR B S oy 3 T
3% 9% 7% 1% .3% 5% . H.5|# i 3 Ak 7K F
U ES AN LR T AN TE S 1= 1 I SR (A £
SRS LR ST S 41 DNA H 3R 1 K-,
SR T A2 BT A 11 7 4 Ja8 J 300 #68 v LA S0k 4 ik
4] DNA B S ALK R 35 0. Ll Gn 76 88 L 4% Fi 4@
38R, = R KRR 3 (R 41 DNA i 5 g F 3 fk
AKEMRIE T REMIEDY . TA R T KR
F N DNA A KF kA T RS . E4)8
360 2 — AR X SR 2% 1) AR L AN R AR A B EE 4 R
I 360 ) ) 2 L35t A% R 45 L A AN [ {FL 9 2 G o
SALE Mg A DNA #4942, 8 17 5 3505 10 R 25 44 1)

A4k, DNA 5 25 (1 % 2 8] 1 A0 B 4E 2 8 —
(18 M) DT 81 92 ik PR 338 LN 28 T 4 3
1.3 BEMES DNA REL
TR A AR A BN EERRZ

o HEW AR BE B LA 3 A B R AR IR
B 3 VI R R e v R B o AN AU TR A A 2
BN M2 A e I B R O 2 A2 A
o FEW) AT 3 2 2 L8 % 6 U oy 2B AR i TR . B
B ESFHERMWIHZ/INEZ 0 X DNA LK
SR RS B R TR AR ) R R 4L 1 B A R 4
JF7E DNA H AL i 7E R IR FEDTER. AF 5 8,
TR i3 T 3% 3 SRR R A K 2 AR Ak I SO B e
T DT 52 M 5 PRI 4 ) e 1 b v8 i ae B4 £
B DNA HEEALZKSE R R i CpNpN i s i) Tam-3
FEE T B AR S & A AR, 52 Tam-3 BB,
UEAk ¥ 38 5 5 0T B E Ok MET1 3k T I &
Ac/Ds 5% 7 W BAL K TR, PR, BRI
AL R 38 T 5] R P 5 R 4 DNAH 3t fk
(75 Ak o EE AN - i R 38 5 BOSHUSE 4 64. 8024
~75. 89 1y CCGG i s & A= T it mg e Y 34k, HL
H 3 Ak 7K O B AR 3 1 A8 A0 A7 A b B 22 e L B
5320 AE B E R LB 2F DRM2,NUCLEAR RNA
POLYMERASE D1(NRPDD) fil NRPE1 |- , % K 41
FSEAE K Tt BRI =2 A0 7 i 22 R
PR b B BT R B S . SR FAJE A6 BT X
AR DNA B 5 Ak K - 1728 Ak 3 A 57 28 1 5%
M)+ B 005 B A 5 67 A5 A F AR S

L5 LR, ¥ EAMAE A R B Y DNA H
FACIKY- KA Al AR B TE R SR MR e . X U B 7
AN [ B TR BE T 38 R AS [R) 9 F ] DNACH 6 4k 7K P
TEAE—E WY 22 58 . T ELV JU 0 A 359 PT 52 i) 455 2 37
SO SRS B AT e 3 Ab A h Ok R 45 8
O A5 35k PR ) 3 35 DA IR RS 1o A B IR A8 1k
1.4 BEYESHEWEREZS DNA HEYL

HERA Bl & — N E K. Wik, Y
AERMEBEAN S Z T 5w R EME SR b
I FE— AR b 32 i A R R B T R A A
PPN F RS . R IRGE . A 20 tHhad 60 ARACE , B
S A R TAE & TF IR B 58 3 BOE G S xR
AREERW, R 90 FA, A TF R IEAT R
F 5% I A 8 35 A B SR L N 38 S e v

AR A e IR R R R 3 T S BOR AR S
41 DNA S H BE A0 KT B L A 19. 6496 H 34k
PR T AR A b, HLRL B Sk o .
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RS BT R WL R R I R BUE A 6 S
FALK T TR R L AR A8 57 e o, g )
BOK R 1 105 Je DNAH AL BT 1 25 160
H A B A A B R 2 22 5 . Kovalchuk %04
WEFE T 4 5 X A B B R 2 DNA A6 7K SF- 22 4k 11
0 » Sz B4R 5 0T 384 DNA F 3L 4k K S, LBl 45 5
RO DI TTTPAN =L ot R SR DRI T S TN
S [A) RAT MV B 1 4 O A B AR AU B
(1 2 AR AL L DN AL P 81 22 25 8 119 38 i LA % e 3t
H LR B 5 DNA R A8 A AR ¢, X R B
BB AL VR B T RT RE 2 5 ] 15 A0 S R A A Rk A
JO7 25 A O T 38 o PR IR S ) B T AT S BOK RS kAR
DNA B EE A A2 AL, HAMRTE G — 2 L i
oo TR FE R CCGG A Y i Mg BE 114 R 5 16 A
E WA BN R AL 1 BAFAE A R 22 Y .
OB 5575 T KRR T RE 88 5 M1 AUSE IR 4] DNA Az
FWEAL, HE WAL Rik2. 2500 AEH
SFUC TR T RO AR AT S BOK R & AR L L
I Honl i 2 45 510

2 HHEHBM

TEEAZA M P, HE AR 4H DNA 4558
B JBT . A% /AR e €8 T BEAS B, B R R
24 146 bp ) DNA fiilfy H2A . H2B.H3.H4 & 2 4~
Oy F A B N SRR AL AT L R 40 T a2
{8 ok 8 4 R R A S 1) YRS A o TR B T
b 21 B B R 52 e DNAHY Ak 1% 722 1 L) 48 K&
Rk, A& N g Rl LLikfr 28 Bk )5 &
Wi, EEALE S WAL WAL 2 R A B AL Rz
Fib. B EAEA SR E g A2k, TE
O S S A N I E R e SR L iR RS i
A B IE A A7 R B AL 10 1L . X AR (4 B 4544
A SCHAE T B U TR R SR AR T R Gk
FKOFE R L 2R B R A A A IR AR
Yrlpae v B AR . ORI 4L &0 ]
A& HE sl 30 ) 6 R 83k . L 2 B B A P Y Tk
b B B R AL 2 AR AT DI S R i gk
T AE 9 22 A0 R0 2802 28 A DU 40 ) 5 PR g ik =000
2.1 HEAZBEL

2H AR WA A B rp S I T
Z— A A R AR N R i 1 £ Ak A R 4
BEEE PR EZEEN . ZOHAEAN OB s
S C LN /N G ihii e Y P e v 1 g = A L A
D) 5 e 5 45 4 A S o R R R . AR

FI SR 2 S WAL 43 3] vh 20 28 1 £ 15k % B2 1 Chis-
tone acetyltransferase, HATs ) F1ZH 8 H 2 2 Biib #: 5%
fiff Chistone deacetylation transferase, HDACs) 4L .

TR HATs 438 4 A F e 53 il & GNAT
(GON5-HHE N A iy L W54 B8 i) K - MYST (MOZ.,
Ybf2/Sas3, Sas2 il Tip60) K Ji% » CBP (CREB-4f &
FD KA TAFTI250 ZE 5 . Hor, GNAT ZK kb
1) GCNS J& 21> L% # I 52 6 U 1) i 46 0 56 T
ADA2 B3k A& GCNS &4 WA v 8Bk i 343 .
WA 2 5 ADA2 MCH B £, Bl ADA2a
A ADA2ZB" | JE 4R i . GCNS fl ADA2 76 # ¥ 4
KEBHREZEEM ., i ADA2b Xk b
A ABA 5 BT, SR A R, SR T GCNS il
ADA2b Z2 78 ¥k H3 F1 H4 Z Btk /K - T K¥[8 B
CORS6. 6, RABI8 fil RD29b R % F i T
RELTY L A i gF CBF1 %% St 7 5 GCN5 Al
ADA2 FIEAE ™ . 3% GCN5 i1 ADA2 3 4 {1l
FIIT Y a0 5 S 3 A R . KA A
KW %, L ABA S 3 OsHAC701, Os-
HAC703,0sHAG702, OsHAG703 1 OsHAMT701
(1) 5% s K7 W IR 42 5 R PR 3A {2 F OsHACT701, Os-
HAC703,0sHAC704 Fl OsHAG703 By k. 1M %
i iE A El e AT Ak . B, HATs w] GRETEAR W)
IVEEE IR/ S ERE RN e S (Y EE

PS5 R0 P A A T A 21 2R 1 S mk Ak il
PR B b . BAZAE AL E 1 L OBk S i
B4y 3 KL B RPD3/HDAL #8 F % , SIR2 Kk
1 HD2 % j%. RPD3 KR HDA6 Fil HDA19 44 &
P12 T A T AT 9] 45 400 R T 6 A= 0 AN AR A i 38 1Y
N, HDA6 5 3 [T 3K F1 RNA $5 3 () DNA H Jt
FEARSET 50 s IR G PR i JA 2
#75) #8255 B HDA19/HD1/AtRPD3A JE [ () 3R ik,
HENMEY  HDAL MidERESFHAEHL
Mt Ak 7k - F B 2 # ETHYLENE RESPONSE FAC-
TOR-1(ERF1) 1 PATHOGENESIS-RELATED (PR)
SR 2Rk, A A EAE 8 AT A2 3E HDAT6 Fi
HDA19 Rk, 520 2 7 s (1) G 8 B i . X 7K F
SR TS R ER S ABACFD JA AR HE, A BEAS W] B8
Ab PTG B HDAC Z6 o AN ) )8 B3 1) 352 3K 7K 7 A
[, HOS15(Chigh expression of osmotically respon-
sive gene) HEGm AL —Fh 251 F TBLI (Transducin Beta-
Like protein-D (2 [, 5 H4 # HAEH S5 H4 %
S AL P L PR Y ik
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2.2 AFBEHREWK

HEAPIRABEHAEABHNEEZTLZ
— FERA T A TR R 2R 5 AL F 70 i 2 2R
81 22 iR F 2L %% 32 B (histone lysine methyltrans-
ferases, HKMTs) 1 4H & [ ¥5 & B8 H Sk 5% F8 il (pro-
tein arginine methyltransferases, PRMTs) f& 1k .
YR [ R0 T S o A B 2 O AL T R
— Bk . 4 B HB3KY FI H3K27 5 % ik [ 1 3k
AHIC . H3K4 Al H3K36 5 B Pl PEAH G .

LB T R 2H A s R R R AL R AR e H3
B Lys 4.Lys 9.Lys 27 Fll Lys 36 F .20 A #i & 2
HL B B A — 4 SET 3 (SET domain) . fE44
Yy SET 38430 4 F2del . SU(VAR) 3-9,E(Z) (
enhancer of zeste), TRX (trithorax) #1 ASH1 (ab-
sent,small, or homeotic discs 1) Hir, TRX
g ATXT 2 5T 8 ia p % . e+ 5 a5
B oatx-1 RABRK BRI & R ST H3K4 =
H 3 b (H3K4me3) 19 /K F T BESY . 45 it 38,
H3K27me3 ] 4 ic £ F B 38 56 Y, W9 s
K3K27me3 51 i3 A 32 1K 7K S B A i 2 5 4
Yo%k T 55 il 300 25 R A0 KRR R R S PR
24 200 HE A B H3K27me3 #Rid™ ™" .t 9
B H3K4me3 fRic 5B R 44 40%, FE LR F
SR 5 a0 BT R B G M. H3K4me3
TEHER AP ARG EEER . Z 5P A K K&
Xt J 260 4 O R Y e RS SR L
FERAETE H3 B Arg2, Arg8. Argl7.Arg26 Fl4i
P H4 9 Arg3 I, B PRMTs 41k, H SKBI
(PRMT5) Z 5 #: i 845, SKB1 5 4 4 i A 7
YEF . 530 HAR3sme2 7K 734 i, 410 i) i 38 55 4 A9
esg HEkik. WA, H3R3sme2 54 (A5 /) 5
H3R3sme2 7K F T B, A2 #F P 30 56 P 3 k0,
I . SKB1 /] ji i ¢ 28 H3R3sme2 8 55 A i FH 5L
RN RN BIE S

2H A8 2 FH R b il T 8 4 A A oA Y A T
HAFEAM . JaddsE A w8 B 5 B A
—FfJ& IMJs(jumonji proteins) & 4 Z ik . B IKLE N
SRR B A b R B I 22 5 D AR
AR = W 3L Ak B (histone lysine demethylase,
KDM) . Jj—F2H 25 11 2 W RE AL i O ot 2 IR 5 S
Z B K Ak B 1 (lysine-specific demethylasel,
KDM1/LSDD"" . HAf. 45 K A% HDMs 2 51
L7/} B RN ORI E NGl NE (78 1= T SR 0l e |
A2 WAL AT BE 2 55 A W) 30 0 2% S BE AR B K Ak

P2 B A% H3K4me Fl H3K4me3 7K F, H3K4me2
FPLH SR R L X B HDMs 1] fii 9 2 15 /K By 36
e SN C 01 e RS ) B S R B
H3K4me3 R4S, T 5 WiE T, H3K4me3
{1 N S Uy 1§ S R = S O 3 7 N 11
H3K4me3 T [ 0] 5 5 B 22 35 A0 ¢, 33 15 W 7K A
HDMs mJ f& 2 5 T 538 iy

3 HeffrE

e o 5t o 9 0 Bk R Rk A A R R — &R
F G0 Jin 25 4 AL B R . H T AT IS L 2 /Y 2
ATP MR e A B8 . (e A S R R R I 1
= WRERR R O ) e 0 BT A W) ik ATP K
iR R TR ) T e DR A (5 [ 48 A S — b R A R
AL AL RGE . ATP R Y 6 R
NS ISR i R 7/ (SRE S 7/ BB Ao L A (B A
ATP O e 4 5 9 S G0 450 3 FhE AL,
% 1 Fh & SWI/SNF; %5 2 & ISF; %8 3 fj & CHD,
Y HAESE RN Tz 1Y 2 SWI/SNF e (4 57 8 98 &2
Y. T SR 2 AT T CHR12
(—7f SNF/BRM 7l He {4 Jii 5 58 P 1) 2% — Fif 611 4
FEH T 0of CHRI12 3 235 58 728 (R 2 85 T 38 31 5
TEFEV A M) E R RAF RS . &R A
T AtCHRI12 K A il B 2% 742 2 3¢ B 1) 28 K45 i
Fl 55 A= UK 5 117 TG Bk 38 A B N, AR X DX 43 B A U A 58
AR AN, LA A ASE I A R T B aE ) S R R . 25
b frik , CHRI12 2 50 9% A B 558 0 i 38 5 2% .
AtSWISB 2l p It SWI/SNE & & 9 19 4% .0 41 i
W4y, ABA Wi T swidba R 7ZF ¥k B RD29B Al
RABIS Jipi 7 2 5 PR 3Rk 7K F 1 B HOX A= KRG A
HAE G B B T RIS . BiE . ABA Al
T 5 g Al e gk SWI/SNF &2 5 ¥ 240 7> PsSNFS 4k
IR BFSE WYL 4R T SWI2/SNF2 Y (5 i
B KT ATPase BRM(BRAHMA) 7 i 361 v &
EHEZEEM, T PR S T orm BRI BT

:x?li‘@Ll()lj .
4 HE4mtS RNA J##

JE 45 RNA (non-coding RNA) 77 45 7§ L6 A fig
R 2R 1 5T {H R A5 U 4 R R B R GR Y RNA,
R4 Dy A [R) AT b H 0 PR 45 A 4B RN A (regula-
tory non-coding RNA) il F K AE 4 % RNA Chouse-
keeping non-coding RNA) ; = 418 RNA R #5
KEAE T 43 K EEAE 45 RNA (long non-coding
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RNA, IncRNA) 145 4% 4F 45 #% RNA (small non-cod-
ing RNA, sncRNA), sncRNA F {5 siRNA.
miRNA F1 piRNA, i# % ,sncRNA 7£ 5% 5 K (5%
FAER LR TGS) FEE 3¢5 K Ce s 5 HERITUER
PTGS) bk K & 3k R A7 1 45 ff F R ik, 7
TR L2, JE 4w % RNA (non-coding RNAs) &
— R E B R AL . B R R 2
B & siRNA (small interfering RNA) fl miRNA
(microRNA) ,

AR IE 2 5 I8 45 e SREE 5% 5 KT Bk R 3R Gk
BN 5 siRNA 43 T A nat-siRNAs, ta-siRNAs Hi
he-siRNAs 28, siRNA K4 RNA i 7 A 6] 59
AWy ARk, dsRNA 4 DCLs & [ 57 8] 21
~24nt, Bl siRNA, siRNA @i RNA 551 DNA
PR Ak T A2 o 9 45 Ak TR A0 B S K P B0 SR R K
P miRNA 5 mRNA 351 54, 5 mRNA
3"-UTR X5 &, AT 3 2 3t o WUt . B
AWK I siRNA Fl miRNA 15 I 425 485 9 1 %4 4E
/R | A7/l PO i A Sl e O (S I e 1
SRO5-P5CDH nat-siRNAs 5 P5CDH #1 SRO5 &
o #h W 30 0 25 o 78 bRy S AR 23, PSCDH
VT B R B AR 3K LA ) L% g R e h
HAEZEEMY, %F AE SR Pa LT 5w
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