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Role of Mitochondrial Alternative Oxidase(AOX) in Photoprotection
in Apple Detached Leaf under Water Stress
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Abstract: The purpose of this study is to explore the role of mitochondrial alternative oxidase (AOX) in
photoprotection in apple leaves under water stress. After treated with salicylhydroxamic acid (SHAM) to
inhibit the AOX pathway, we studied the effects of AOX pathway on photoprotection in Malus hupehensis
detached leaves under water stress by simultaneously analyzing chlorophyll a fluorescence transient and
light absorbance at 820 nm. The results indicated that water stress induced the up-regulation of AOX ac-
tivity. The inhibition of AOX pathway caused more severe photoinhibition. Under water stress, maximum
quantum yield of primary PS]] photochemistry (TRo/ABS) and PS|l trapped electron being transferred
from Q. to Qs(ETo/TRo) decreased, average absorbed photon flux per PS]| reaction center (ABS/RC)
increased, while the maximum PS | redox acitity(AI/I,) was not affected. After treated with SHAM to
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inhibit the AOX pathway, ABS/RC markedly increased, TRo/ABS, ETo/TRo as well as Al/I, significant-

ly decreased. It was indicated that under water stress the inhibition of AOX pathway caused more severe

photoinhibition, especially to the PS] . Generally, the results demonstrate that the AOX pathway played

an important role in the photoprotection in M. hupehensis leaves under water stress, particularly in the

photoprotection of PST .

Key words:apple; Malus hupehensis Rehd. ; water stress; mitochondrial alternative oxidase; photoprotec-

tion
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Fig. 1 Changes in the water potential of M. hupehensis

leaves during dehydration with light
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Table 1

Changes in the total respiration, AOX respiration and COX respiration in M. hupehensis leaves during

dehydration and SHAM application

BT

Total respiration

Tt AOX W1
b3 ﬂfbk I
Treatment Dehydration

AOX respiration

AOX I/
BEIE AOX
respiration/ Total

COX g
COX respiration

COX W / i I 1)
COX respiration/ Total

time/h /(umol e m 2+ s 1) /(pmolem 2+s 1) /(umolem 2«51 respiration/ % respiration/ %
0 2.927+0. 45¢ 0.7840. 13c 2.14+0. 32a 27+ 4c 73+ 10a
CK 2 3.36+£0.21b 1.1140.08b 2.25+0.13a 33+2b 67+9b
4 3.78+0. 48a 1.45+0. 13a 2.34+0. 35a 38+3a 62+10b
0 2.474+0. 25b 0.32740.05b 2.16+0.21a 13+3d 87+ 11la
SHAM 2 2.74+0. 33a 0.43+0.03a 2.31+£0. 3a 1642d 84+10a
4 2.84+0. 32a 0.4940. 05a 2.36+0.27a 1744d 83+1la

T AR 7R [ — Ak AN ] JBE K B i) 2 [B] 76 0. 05 /K P77 7 W 3 22 575 T IR

Note: Different letters in the same treatment but different dehydration times indicate significant difference among treatments at 0. 05 level;

The same as below.
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SHAM application
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leaves during dehydration and SHAM application
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