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Responses of Hydraulic Transport Efficiency and Safety of
Current-year Stems in Pinus tabulae formis Seedlings
to Nutrient Addition and Irrigation
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Abstract: The responses of hydraulic transport efficiency and safety to nutrients and water addition are the
foundation for probing the mechanisms of extensive acclimation in Pinus tabulae formis. Using the newly-
developed centrifuge method and taking three treatments as control (CK, no fertilization, natural precipi-
tation) , N and P addition (F, fertilizers were applied with the application rate as 120 kg/hm?® pure N and
60 kg/hm* pure P per year, natural precipitation), N and P addition plus irrigation (FI, fertilizers were
applied with the application rate as 120 kg/hm? pure N and 60 kg/hm?* pure P per year, 100 mm water was

irrigated excluding local precipitation) , we studied the responses of transport efficiency and vulnerability to
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embolism of current-year stems in Chinese pine seedlings to nutrients and water addition. The results indi-
cated that: (1) N and P addition raised basal diameter, canopy size and aboveground biomass, but had no
effect on specific hydraulic conductivity (K,), leaf specific conductivity (LSC), Huber value, embolism
resistance (P;,) and safety margin comparing to the control. (2) Concurrent addition of N, P and water in-
creased plant height, basal diameter, canopy size and aboveground biomass, no difference between treat-
ments was found for K., LSC and Huber value, but P;, of FI treatment increased by 0. 2 MPa and safety
margin also narrowed. These results suggest that nutrient addition had no obvious effect on transport effi-
ciency and safety; water addition did not affect transport efficiency but increased the vulnerability to em-
bolism. The reason was mainly related with longer tracheid length and lower implosion resistance in FI treatment.

Key words: Pinus tabulae formis seedlings; nutrients and water addition; transport efficiency; vulnerability
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Table 1 The growth status of Chinese pine seedlings with nutrient addition and irrigation
Lib 3 o . . S, . M T A
Treatment k& Height/cm 142 Basal diameter/cm J& IE Canopy size/cm Abovcgrgund biomass/g
CK 63.83+6.53 b 1.9040.07 ¢ 35.754+2.13 ¢ 172.344+29.30 ¢
F 70.33+E7.25b 2.20£0.04 b 45.584+2.85 b 234.65+30.00 b
FI 85.63+6.31 a 2.647+0.06 a 63.42+3.12 a 345.33423.63 a

T CK X L F 9% 50 U8 Ak B8, FT 2 9% 53 7K 43 [ I 3 i Ak 245 A8 [ 2 Bk R AL BE [ #E 0. 05 /KPR B B 3% . T 1A

CK is the control, F is N and P addition treatment, FI is N and P addition plus irrigation treatment (n=29) ; Different letters indicated sig-

nificant difference between treatments at 0. 05 level; The same as below
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Fig. 1 The specific hydraulic conductivity, leaf specific conductivity and Huber value for three treatments

of Chinese pine seedlings(n=9)
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Table 2 The modeled Weibull function parameters of

vulnerability curves for different treatments

Ab PR Treatment b /MPa ¢
CK 2.9340.06 a 17.25+2.29
F 2.987+0.08 a 15.44+1.71
FI 2.74+0.05 b 17.44+1.01
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Fig. 3 The calculated Py, , Ps, and Pg of different

treatments based on modeled Weibull function
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Table 3 The anatomical structure of stems in Chinese pine seedlings with different treatments

fige F 45 A A B o

Anatomical traits and wood density CK F FI
45l B 7% Tracheid diameter/pm 13.9240. 93 13.1+0. 23 14.9440. 66
& M % ¥ Tracheid density/(No « mm™?2) 1961+£175 23174223 1896+111
A W 1 R o A R it B9 L ) Tracheid area proportion/ % 25.77+6.58 31.42+2.08 33.03+1. 80
7k J1 4% Hydraulic -weighted diameter/pm 17.6141.31 15.7340. 64 17.2740. 68

M BE P MR BB /7 Implosion resistance (¢/b1)1,%
& K J¥ Tracheid length/mm

AK#1% F Wood density/(g + cm™?)

0.2340. 04a
1.112£0. 05b

0.3840. 07

0.21-0. 03a
1.10%£0.07b

0.3320.05

0.16+0.03b
1.2840. 04a

0.2740.01
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