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犪狀犱犐狋狊犃狆狆犾犻犮犪狋犻狅狀犻狀犕犪犻狕犲犅狉犲犲犱犻狀犵

ＳＵＮＱｉ１，ＬＩＷｅｎｌａｎ１，ＣＨＥＮＬｉｔａｏ２，ＺＨＡＯＭｅｎｇ
１，ＬＩＷｅｎｃａｉ１，

ＹＵＹａｎｌｉ１，ＭＥＮＧＺｈａｏｄｏｎｇ
１

（１ＭａｉｚｅＩｎｓｔｉｔｕｔｅ，ＳｈａｎｄｏｎｇＡｃａｄｅｍｙｏｆＡｇｒｉｃｕｌｔｕｒａｌＳｃｉｅｎｃｅｓ，Ｊｉｎａｎ２５０１００，Ｃｈｉｎａ；２ＬａｉｙａｎｇＣｉｔｙＳｅｅｄＣｏｒｐｏｒａｔｉｏｎ，Ｌａｉｙ

ａｎｇ，Ｓｈａｎｄｏｎｇ２６５２００，Ｃｈｉｎａ）

犃犫狊狋狉犪犮狋：Ｍａｒｋｅｒａｓｓｉｓｔｅｄｓｅｌｅｃｔｉｏｎ（ＭＡＳ）ｔｅｃｈｎｏｌｏｇｙｃｏｕｌｄｒｅａｌｉｚｅｄｉｒｅｃｔｇｅｎｅｔｉｃｓｅｌｅｃｔｉｏｎ，ｂｕｔｉｔｍｕｓｔ

ｂａｓｅｏｎＱＴＬｍａｐｐｉｎｇ．Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ（ＧＳ），ａｓｔｈｅｎｅｗｅｓｔＭＡＳｍｅｔｈｏｄ，ｈａｓｍｕｃｈａｄｖａｎｔａｇｅｃｏｍ

ｐａｒｅｄｔｏｔｒａｄｉｔｉｏｎａｌＭＡＳｔｅｃｈｎｏｌｏｇｙ，ｅｓｐｅｃｉａｌｌｙＱＴＬｍａｐｐｉｎｇｎｏｔｎｅｃｅｓｓａｒｙ．Ｉｎｔｈｉｓｐａｐｅｒ，ｔｈｅｆａｃｔｏｒｓａｆ

ｆｅｃｔｉｎｇｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｏｆＧＳｗｅｒｅｒｅｖｉｅｗｅｄ，ｉｎｃｌｕｄｉｎｇｔｒａｉｎｉｎｇｐｏｐｕｌａｔｉｏｎｔｙｐｅ，ｐｒｅｄｉｃｔｉｏｎｍｏｄｅｌ，

ｍａｒｋｅｒｎｕｍｂｅｒ，ｐｏｐｕｌａｔｉｏｎｓｉｚｅ，ｐｏｐｕｌａｔｉｏｎｓｔｒｕｃｔｕｒｅ，ｈｅｒｅｄｉｔａｒｙｏｆｔｒａｉｔｓａｎｄｓｏｏｎ．Ｔｈｅａｐｐｌｉｃａｔｉｏｎｏｆ

ＧＳｉｎｍａｉｚｅｂｒｅｅｄｉｎｇｗａｓａｌｓｏｉｎｔｒｏｄｕｃｅｄａｓｗｅｌｌａｓｈｙｂｒｉｄｓｐｅｒｆｏｒｍａｎｃｅｐｒｅｄｉｃｔｉｏｎ．Ｗｅｔｈｅｎｐｒｅｄｉｃａｔｅｄ

ｔｈｅｆｕｔｕｒｅｒｅｓｅａｒｃｈａｎｄａｐｐｌｉｃａｔｉｏｎｏｆＧＳｉｎｍａｉｚｅｂｒｅｅｄｉｎｇ．

犓犲狔狑狅狉犱狊：ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ（ＧＳ）；ｍａｉｚｅ；ＧＥＢＶ

　　Ｗｉｔｈｒａｐｉｄｄｅｖｅｌｏｐｍｅｎｔｏｆｔｈｅｍｏｌｅｃｕｌａｒｂｉｏｌ

ｏｇｙ ａｎｄ ｇｅｎｏｍｉｃｓ， ｍａｒｋｅｒａｓｓｉｓｔｅｄ ｓｅｌｅｃｔｉｏｎ

（ＭＡＳ）ｅｍｅｒｇｅｄａｓｔｈｅｔｉｍｅｓｒｅｑｕｉｒｅ．ＭＡＳｔｅｃｈ

ｎｏｌｏｇｙｉｓａｓａｋｉｎｄｏｆｃｒｏｐｇｅｎｅｔｉｃｉｍｐｒｏｖｅｍｅｎｔ

ｍｅｔｈｏｄｃｏｍｂｉｎｇｔｈｅｐｈｅｎｏｔｙｐｉｃａｎｄｇｅｎｅｔｉｃｖａｌｕｅ，

ｗｈｉｃｈｃａｎｒｅａｌｉｚｅｇｅｎｅｔｉｃｄｉｒｅｃｔｓｅｌｅｃｔｉｏｎａｎｄｅｆｆｅｃ



ｔｉｖｅｐｏｌｙｍｅｒｉｚａｔｉｏｎ
［１］．Ｗｈｅｎｃｏｍｐｌｅｘｔｒａｉｔｓｃｏｎ

ｔｒｏｌｌｅｄｂｙ ｍｕｌｔｉｐｌｅｇｅｎｅｓｎｅｅｄｔｏｂｅｉｍｐｒｏｖｅｄ，

ＭＡＳｈａｓｔｗｏａｓｐｅｃｔｓｏｆｆｌａｗｓ．Ｆｉｒｓｔ，ｓｅｌｅｃｔｉｏｎｏｆ

ｔｈｅｐｒｏｇｅｎｙｐｏｐｕｌａｔｉｏｎｉｓｅｓｔａｂｌｉｓｈｅｄｏｎｔｈｅｑｕａｎ

ｔｉｔｙｔｒａｉｔｓｌｏｃａｔｉｏｎ（ＱＴＬ）ｍａｐｐｉｎｇ．Ｂｕｔｔｈｅｒｅｓｕｌｔ

ｏｆＱＴＬｍａｐｐｉｎｇｂａｓｉｎｇｏｎｔｈｅｂｉｐａｒｅｎｔａｌｐｏｐｕｌａ

ｔｉｏｎｓｈａｓｎｏｕｎｉｖｅｒｓａｌｉｔｙａｎｄｃｏｕｌｄｎ’ｔｂｅａｐｐｌｉｅｄ

ａｃｃｕｒａｔｅｌｙｉｎｂｒｅｅｄｉｎｇ
［２］．Ｓｅｃｏｎｄ，ｔｈｅｉｍｐｏｒｔａｎｔ

ｔｒａｉｔｓｗｅｒｅｃｏｎｔｒｏｌｌｅｄｂｙｌｏｔｓｏｆｓｍａｌｌｅｆｆｅｃｔｉｖｅ

ｇｅｎｅｓ，ｌａｃｋ ｏｆａｐｐｒｏｐｒｉａｔｅｓｔａｔｉｓｔｉｃ ｍｅｔｈｏｄａｎｄ

ｂｒｅｅｄｉｎｇｔｅｃｈｎｏｌｏｇｙ ｗｈｉｃｈ ｗｉｌｌａｐｐｌｙ ｑｕａｎｔｉｔｙ

ｇｅｎｅｓｔｏｃｏｍｐｌｅｘｔｒａｉｔｓｉｍｐｒｏｖｅｍｅｎｔ
［３］．ＮｅｗＭＡＳ

ｔｅｃｈｎｏｌｏｇｙｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ（ＧＳ）ｅｍｅｒｇｅｄａｓｔｈｅ

ｔｉｍｅｓｒｅｑｕｉｒｅ．

１　Ｏｒｉｇｉｎａｔｉｏｎａｎｄａｄｖａｎｔａｇｅｏｆｇｅ

ｎｏｍｉｃｓｅｌｅｃｔｉｏｎ（ＧＳ）

　　Ｍｅｕｗｉｓｓｅｎｆｉｒｓｔｐｕｔｆｏｒｗａｒｄｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ

（ＧＳ）ｂｒｅｅｄｉｎｇｓｔｒａｔｅｇｙ．ＧＳｕｓｅｓａ“ｔｒａｉｎｉｎｇｐｏｐｕ

ｌａｔｉｏｎ”ｏｆｉｎｄｉｖｉｄｕａｌｓｔｈａｔｈａｖｅｂｅｅｎｇｅｎｏｔｙｐｅｄａｎｄ

ｐｈｅｎｏｔｙｐｅｄ． Ｂｅｓｔ ｌｉｎｅａｒ ｕｎｂｉａｓｅｄ ｐｒｅｄｉｃｔｉｏｎ

（ＢＬＵＰ）ｍｏｄｅｌｉｓｅｓｔａｂｌｉｓｈｅｄｏｎｔｈｅｂａｓｉｓｏｆｔｈｅ

ｇｅｎｏｔｙｐｅｄｒｅｓｕｌｔｏｆａｎｉｎｄｉｖｉｄｕａｌａｎｄｉｔｓｂｒｅｅｄｉｎｇ

ｖａｌｕｅ （Ｍｅａｎｐｅｒｆｏｒｍａｎｃｅｏｆｃｒｏｓｓｅｓｗｉｔｈｓａｍｅ

ｔｅｓｔｅｒ）ｆｏｒｔｈｅｔｒａｉｎｉｎｇｐｏｐｕｌａｔｉｏｎ．Ｔｈｅｂｒｅｅｄｉｎｇ

ｖａｌｕｅｏｆ“Ｃａｎｄｉｄａｔｅｐｏｐｕｌａｔｉｏｎ”ｉｓｅｓｔｉｍａｔｅｄｂｙ

ＢＬＵＰｍｏｄｅｌａｎｄｇｅｎｏｔｙｐｉｃｄａｔａ．ｗｉｔｈｏｕｔｃｒｏｓｓｔｏ

ｔｅｓｔｅｒａｎｄ ｐｈｅｎｏｔｙｐｅｓｒｅｃｏｒｄ
［４］．ＢＬＵＰ ｍｏｄｅｌ

ｔａｋｅｓｇｅｎｏｔｙｐｉｃｄａｔａｏｆｕｎｔｅｓｔｅｄｉｎｄｉｖｉｄｕａｌｓａｎｄ

ｐｒｏｄｕｃｅｓｇｅｎｏｍｉｃｅｓｔｉｍａｔｅｄｂｒｅｅｄｉｎｇｖａｌｕｅｓ（ＧＥＢ

Ｖｓ）．ＴｈｅｓｅＧＥＢＶｓｓａｙｎｏｔｈｉｎｇｏｆｔｈｅｆｕｎｃｔｉｏｎｏｆ

ｔｈｅｕｎｄｅｒｌｙｉｎｇｇｅｎｅｓａｓｔｈｅｉｄｅａｌｓｅｌｅｃｔｉｏｎｃｒｉｔｅｒｉ

ｏｎ
［５］．ＧｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｂａｓｉｓｏｆＧＥＢＶｓｉｓｓｕｐｅｒｉ

ｏｒｔｏｔｒａｄｉｔｉｏｎａｌｂｒｅｅｄｉｎｇｆｏｒｉｎｃｒｅａｓｉｎｇｇａｉｎｓｐｅｒ

ｕｎｉｔｔｉｍｅｅｖｅｎｉｆｂｏｔｈｍｏｄｅｌｓｓｈｏｗｔｈｅｓａｍｅｅｆｆｉ

ｃｉｅｎｃｙ．Ｉｎｐｒｉｎｃｉｐｌｅ，ｐｈｅｎｏｔｙｐｅｓｖａｌｕｅｏｆｔｈｅｃａｎ

ｄｉｄａｔｅｉｎｄｉｖｉｄｕａｌｓｉｓｎｏｎｅｓｓｅｎｔｉａｌｆｏｒｔｈｅｓｅｌｅｃｔｉｏｎ，

ｈｅｎｃｅｓｈｏｒｔｅｎｉｎｇｔｈｅｌｅｎｇｔｈｏｆｔｈｅｂｒｅｅｄｉｎｇｃｙ

ｃｌｅ
［６］．

Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｈａｖｅｓｅｖｅｒａｌｍｅｒｉｔｓｃｏｍ

ｐａｒｅｄｔｏｔｈｅｔｒａｄｉｔｉｏｎａｌＭＡＳ．（１）ＱＴＬｍａｐｐｉｎｇｉｓ

ｎｏｔｎｅｃｅｓｓａｒｙｆｏｒＧＳ．Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｄｉｆｆｅｒｓ

ｆｒｏｍｐｒｅｖｉｏｕｓｓｔｒａｔｅｇｉｅｓｓｕｃｈａｓｌｉｎｋａｇｅａｎｄａｓｓｏｃｉ

ａｔｉｏｎｍａｐｐｉｎｇｉｎｔｈａｔｉｔａｂａｎｄｏｎｓｔｈｅｏｂｊｅｃｔｉｖｅｔｏ

ｍａｐｔｈｅｅｆｆｅｃｔｏｆｓｉｎｇｌｅｇｅｎｅａｎｄｉｎｓｔｅａｄｏｆｆｏｃｕ

ｓｉｎｇｏｎｔｈｅｅｆｆｉｃｉｅｎｔｅｓｔｉｍａｔｉｏｎｏｆｂｒｅｅｄｉｎｇｖａｌｕｅｓ

ｏｎｔｈｅｂａｓｉｓｏｆａｌａｒｇｅｎｕｍｂｅｒｏｆｍｏｌｅｃｕｌａｒｍａｒｋ

ｅｒｓ，ｉｄｅａｌｌｙｃｏｖｅｒｉｎｇｔｈｅｆｕｌｌｇｅｎｏｍｅ
［５］．（２）Ｇｅ

ｎｏｍｉｃｓｅｌｅｃｔｉｏｎｉｓｍｏｒｅｐｒｅｃｉｓｉｏｎｅｓｐｅｃｉａｌｌｙｆｏｒｅａｒ

ｌｙｓｅｌｅｃｔｉｏｎ．Ｇｅｎｏｔｙｐｉｎｇｕｓｅｓｈｉｇｈｄｅｎｓｉｔｙｍｏｌｅｃｕ

ｌａｒｍａｒｋｅｒｓｗｈｉｃｈｃａｎｅｓｔｉｍａｔｅａｌｌｏｆｔｈｅＱＴＬ

ｅｆｆｅｃｔｓａｎｄｅｘｐｌａｉｎｔｈｅｇｅｎｅｔｉｃｖａｒｉａｎｃｅｆｏｒｍｏｓｔｏｆ

ｔｈｅｔｒａｉｔｓ．ＢｕｔＭＡＳｏｎｌｙｕｓｅｓｓｅｖｅｒａｌｍａｒｋｅｒｓｉｎ

ｔｒａｉｔｓｓｅｌｅｃｔｉｏｎ．Ｓｏｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｉｓｍｏｒｅａｃｃｕ

ｒａｔｅｔｈａｎ ＭＡＳ
［７］．（３）Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｃａｎ

ｓｈｏｒｔｅｎｇｅｎｅｒａｔｉｏｎｉｎｔｅｒｖａｌ，ａｃｃｅｌｅｒａｔｅｇｅｎｅｔｉｃｐｒｏ

ｇｒｅｓｓａｎｄｒｅｄｕｃｅｐｒｏｄｕｃｔｉｏｎｃｏｓｔ．Ｇｅｎｅｔｉｃｐｒｏｇｒｅｓｓ

ｏｆＧＳｉｓｍｏｒｅｔｈａｎｐｈｅｎｏｔｙｐｉｃｓｅｌｅｃｔｉｏｎ４％ －

２５％．ＣｏｓｔｏｆＧＳｉｓｌｅｓｓｔｈａｎｔｒａｄｉｔｉｏｎａｌｂｒｅｅｄｉｎｇ
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ｔｉｏｎｗａｓａｐｐｌｉｅｄｉｎｐｌａｎｔｂｒｅｅｄｉｎｇ，ｈｏｗｅｖｅｒ，ｎｏｔ

ｏｎｌｙｗｉｔｈｉｎａｓｐｅｃｉｆｉｃｂｉｐａｒｅｎｔａｌｃｒｏｓｓｏｒｗｉｔｈｉｎａ

ｄｉｖｅｒｓｅｐａｎｅｌｏｆｅｌｉｔｅｌｉｎｅｓｂｕｔａｌｓｏｒａｔｈｅｒｗｉｔｈｉｎ

ａｎｄａｍｏｎｇｃｒｏｓｓｅｓ
［３７］．Ｓｅｌｆｐｏｌｌｉｎａｔｉｏｎｐｌａｎｔｏｆｔｅｎ

ａｄｏｐｔｎａｔｕｒａｌｐｏｐｕｌａｔｉｏｎｓｕｃｈａｓｗｈｅａｔｏｒｓｕｇａｒ．

Ｗüｒｓｃｈｕｍｅｔａｌｕｓｅｄ９２４ｓｕｇａｒｂｅｅｔｌｉｎｅｓａｓｔｒａｉｎ

ｉｎｇｐｏｐｕｌａｔｉｏｎ．Ｔｈｅｒｅｓｕｌｔｓｓｕｇｇｅｓｔｔｈａｔａｔｒａｉｎｉｎｇ

ｐｏｐｕｌａｔｉｏｎ ｄｅｒｉｖｅｄｆｒｏｍ ｉｎｔｅｎｓｉｖｅｌｙ ｐｈｅｎｏｔｙｐｅｄ

ａｎｄｇｅｎｏｔｙｐｅｄｄｉｖｅｒｓｅｌｉｎｅｓｆｒｏｍａｂｒｅｅｄｉｎｇｐｒｏ

ｇｒａｍｄｏｅｓｈｏｌｄｐｏｔｅｎｔｉａｌｔｏｂｕｉｌｄｕｐｒｏｂｕｓｔｃａｌｉｂｒａ

ｔｉｏｎｍｏｄｅｌｓｆｏｒｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ
［１７］．Ｈａｎｓ犲狋犪犾．

ａｃｃｅｓｓｅｄｔｈｅａｃｃｕｒａｃｙｏｆＧＥＢＶｓｆｏｒｒｕｓｔｒｅｓｉｓｔａｎｃｅ

ｉｎ２０６ｈｅｘａｐｌｏｉｄｗｈｅａｔｌａｎｄｒａｃｅｓ
［１５］．

２．２　犘狉犲犱犻犮狋犻狅狀犿狅犱犲犾狅犳犵犲狀狅犿犻犮狊犲犾犲犮狋犻狅狀

Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｍｏｄｅｌｉｎｇｔａｋｅｓａｄｖａｎｔａｇｅｏｆ

ｔｈｅｉｎｃｒｅａｓｉｎｇａｂｕｎｄａｎｃｅｏｆ ｍｏｌｅｃｕｌａｒ ｍａｒｋｅｒｓ

ｔｈｒｏｕｇｈｍｏｄｅｌｉｎｇｏｆｍａｎｙｇｅｎｅｔｉｃｌｏｃｉｗｉｔｈｓｍａｌｌ

ｅｆｆｅｃｔｓ
［２６，３５，３８］．Ｏｖｅｒｔｈｅｌａｓｔｄｅｃａｄｅ，ｓｉｍｕｌａｔｉｏｎ

ａｎｄｅｍｐｉｒｉｃａｌｃｒｏｓｓｖａｌｉｄａｔｉｏｎｓｔｕｄｉｅｓｉｎ ｐｌａｎｔｓ

ｈａｖｅｓｈｏｗｎＧＳｉｓｍｏｒｅｅｆｆｅｃｔｉｖｅｔｈａｎｔｒａｄｉｔｉｏｎａｌ

ＭＡＳｓｔｒａｔｅｇｉｅｓｔｈａｔｕｓｅｏｎｌｙａｓｕｂｓｅｔｏｆｍａｒｋｅｒｓ
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ｗｉｔｈｓｉｇｎｉｆｉｃａｎｔｅｆｆｅｃｔｓ
［５７，３９］．

Ｅｓｔｉｍａｔｉｏｎｍｅｔｈｏｄｓｏｆａｌｌｅｌｉｃｅｆｆｅｃｔｓｉｎｃｌｕｄｅ

ｌｅａｓｔｓｑｕａｒｅｓｒｅｇｒｅｓｓｉｏｎ
［４０］，ｒｉｄｇｅｒｅｇｒｅｓｓｉｏｎＢＬＵＰ

（ＲＲＢＬＵＰ），ｐｒｉｎｃｉｐｌｅｃｏｍｐｏｎｅｎｔａｎａｌｙｓｉｓ
［４１４２］

ａｎｄ Ｂａｙｅｓｒｅｇｒｅｓｓｉｏｎ
［４３］．Ｉｎ ｅｓｓｅｎｃｅｆｏｒｌｅａｓｔ

ｓｑｕａｒｅｓ，ｃｈｒｏｍｏｓｏｍｅｆｒａｇｍｅｎｔｓｏｒｍａｒｋｅｒｓａｒｅｓｅ

ｌｅｃｔｅｄａｓｓｏｃｉａｔｅｄｔｏｔｈｅｔｒａｉｔｓｂｙｇｅｎｏｍｅｗｉｄｅａｓ

ｓｏｃｉａｔｉｏｎｓｔｕｄｉｅｓ（ＧＷＡＳ）ａｔｔｈｅｓａｍｅｔｉｍｅａｎｄ

ｔｈｅｎｔｈｅｅｆｆｅｃｔｏｆｔｈｅｆｒａｇｍｅｎｔｓｉｓｅｓｔｉｍａｔｅｄ
［４４］．

ＲＲＢＬＵＰｍｅｔｈｏｄｒｅｇａｒｄｓｔｈｅｆｒａｇｍｅｎｔｅｆｆｅｃｔｓａｓ

ｒａｎｄｏｍｅｆｆｅｃｔｓ．Ｔｈｅｍａｒｋｅｒｅｆｆｅｃｔｗａｓｅｓｔｉｍａｔｅｄ

ｂｙｌｉｎｅａｒｍｉｘｅｄ ｍｏｄｅｌｓ．Ｔｈｅｓｕｍ ｏｆｆｒａｇｍｅｎｔｓ

ｅｆｆｅｃｔｉｓｂｒｅｅｄｉｎｇｖａｌｕｅｆｏｒａｎｉｎｄｉｖｉｄｕａｌ
［４３］．Ｂａｙｅｓ

ｍｅｔｈｏｄｓｃｏｍｂｉｎｅｓｔｈｅｐｒｉｏｒｄｉｓｔｒｉｂｕｔｉｏｎｏｆｍａｒｋｅｒ

ｅｆｆｅｃｔｖａｒｉａｎｃｅａｎｄｄａｔａｃｏｌｌｅｃｔｉｏｎ．Ｆｒｅｎｑｕｅｎｔｌｙ

ｕｓｅｄＢａｙｅｓｍｅｔｈｏｄｓｃｏｎｃｌｕｄｅＢａｙｅｓＡａｎｄＢａｙｅｓ

Ｂ．ＭａｉｎｄｉｆｆｅｒｅｎｃｅｂｅｔｗｅｅｎＢａｙｅｓＡａｎｄＢａｙｅｓＢｉｓ

ｔｈａｔＢａｙｅｓＡｐｅｒｍｉｔｓｄｉｆｆｅｒｅｎｔｖａｒｉａｎｃｅｆｏｒｄｉｆｆｅｒ

ｅｎｔｍａｒｋｅｒｓａｎｄＢａｙｅｓＢｐｅｒｍｉｔｓｔｈａｔｔｈｅｖａｒｉａｎｃｅ

ｏｆｓｏｍｅｍａｒｋｅｒｓｉｓｚｅｒｏ
［４５］．

Ｓｉｍｕｌａｔｉｏｎｓｔｕｄｉｅｓｓｈｏｗｔｈａｔｔｈｅｐｒｅｄｉｃｔｉｏｎ

ａｃｃｕｒａｃｙｏｆＢａｙｅｓｍｅｔｈｏｄｉｓｂｅｓｔａｎｄｌｅａｓｔｓｑｕａｒｅｓ

ｉｓｗｅａｋｅｓｔ．ＴｈｅａｃｃｕｒａｃｙｒａｔｅｏｆＲＲＢＬＵＰｉｓ

ｓｌｉｇｈｔｌｙｓｍａｌｌｅｒｔｈａｎＢａｙｅｓＡ．Ｅｖｅｎｓｏ，ＲＲＢＬＵＰ

ｈａｓｆｏｕｒａｓｐｅｃｔｓｓｕｐｅｒｉｏｒｔｏ Ｂａｙｅｓｉａｎ ｍｅｔｈｏｄ．

Ｆｉｒｓｔ，Ｂａｙｅｓｉａｎｍｅｔｈｏｄｉｓｃｏｍｐｌｅｘａｎｄｎｅｅｄｓｕｐｅｒ

ｃｏｍｐｕｔｅｒ．Ｂｕｔｃｏｍｐｕｔｅｒｒｅｑｕｉｒｅｍｅｎｔｉｓｌｏｗｅｒａｎｄ

ｃａｌｃｕｌａｔｉｏｎｓｐｅｅｄｉｓｈｉｇｈｅｒｆｏｒＲＲＢＬＵＰ．Ｍａｒｋｅｒ

ｅｆｆｅｃｔｓａｒｅｅｓｔｉｍａｔｅｄｂｙＲＲＢＬＵＰｉｎＳＡＳＰＲＯＣ

ＩＭＬ
［４６］．Ｓｅｃｏｎｄ，ｐｒｅｄｉｃｔｉｏｎ ｗｉｔｈｉｎｆａｍｉｌｉｅｓｗａｓ

ｍｏｒｅａｃｃｕｒａｔｅｉｎＢＬＵＰｔｈａｎＢａｙｅｓＢ．Ｒｅｇｒｅｓｓｉｏｎ

ｃｏｅｆｆｉｃｉｅｎｔｂｏｆＲＲＢＬＵＰｉｓｎｅａｒｅｒｔｏ１ｔｈａｎＢａｙｅｓ

Ａ
［４７］．Ｈａｂｉｅｒ犲狋犪犾．ｓｈｏｗｅｄｔｈａｔＲＲＢＬＵＰｉｓｍｏｒｅ

ｅｆｆｅｃｔｉｖｅａｔｃａｐｔｕｒｉｎｇｇｅｎｅｔｉｃｒｅｌａｔｉｏｎｓｈｉｐｓｂｅｃａｕｓｅ

ｉｔｆｉｔｓｍｏｒｅｍａｒｋｅｒｓｉｎｔｏｔｈｅｐｒｅｄｉｃｔｉｏｎＭｏｄｅｌ
［２７］．

Ｉｎｃｏｎｔｒａｓｔ，ＢａｙｅｓＢｉｓｍｏｒｅｅｆｆｅｃｔｉｖｅａｔｃａｐｔｕｒｉｎｇ

ＬＤｂｅｔｗｅｅｎｍａｒｋｅｒｓａｎｄＱＴＬ．Ｔｈｉｒｄ，ＲＲＢＬＵＰ

ｉｓｍｏｒｅａｃｃｕｒａｔｅｔｈａｎｏｔｈｅｒｍｅｔｈｏｄｗｈｅｎｔｈｅｎｕｍ

ｂｅｒｏｆＱＴＬｓｉｎｃｒｅａｓｅｓｏｒｔｈｅｈｅｒｅｄｉｔｙｉｓｈｉｇｈｅｒ
［１８］．

Ｆｏｕｒｔｈ，ＢＬＵＰｌｅｄｔｏｌｏｗｅｒｉｎｂｒｅｅｄｉｎｇａｎｄａｓｍａｌ

ｌｅｒｒｅｄｕｃｔｉｏｎｏｆｇｅｎｅｔｉｃｖａｒｉａｎｃｅｃｏｍｐａｒｅｄｔｏＢａｙｅｓ

ａｎｄＰＬＳ
［４８］．Ｆｒｏｍ ａｂｏｖｅ，ｗｅｃａｎｃｏｎｃｌｕｄｔｈａｔ

ＢＬＵＰｍｅｔｈｏｄｓｉｓｂｅｔｔｅｒｔｈａｎＢａｙｅｓｉａｎｒｅｇｒｅｓｓｉｏｎ

ｆｏｒｐｌａｎｔｍｏｄｅｌｓ．

Ｉｎａｄｄｉｔｉｏｎ，ｍａｃｈｉｎｅｌｅａｒｎｉｎｇ ｍｅｔｈｏｄｓａｌｓｏ

ｃａｎｂｅｕｓｅｄｔｏｐｒｅｄｉｃｔｔｈｅｍａｒｋｅｒｅｆｆｅｃｔ，ｉｎｃｌｕｄｉｎｇ

ｓｕｐｐｏｒｔｖｅｃｔｏｒｍａｃｈｉｎｅ（ＳＶＭ），ｂｏｏｔｉｎｇａｎｄｒａｎ

ｄｏｍｆｏｒｅｓｔ（ＲＦ）．Ｏｇｕｔｕ犲狋犪犾．ｃｏｍｐａｒｅｄｔｈｅｓｅ

ｍｅｔｈｏｄｓｆｏｒｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ．Ｔｈｅｒｅｓｕｌｔｓｈｏｗｓ

ｔｈａｔｔｈｅｃｏｒｒｅｌａｔｉｏｎｂｅｔｗｅｅｎｔｈｅｐｒｅｄｉｃｔｅｄａｎｄｔｒｕｅ

ｂｒｅｅｄｉｎｇｖａｌｕｅｓｉｓ０．５４７ｆｏｒｂｏｏｓｔｉｎｇ，０．４９７ｆｏｒ

ＳＶＭｓ，ａｎｄ０．４８３ｆｏｒＲＦ，ｉｎｄｉｃａｔｉｎｇｂｅｔｔｅｒｐｅｒ

ｆｏｒｍａｎｃｅｆｏｒｂｏｏｓｔｉｎｇｔｈａｎｆｏｒＳＶＭｓａｎｄＲＦ
［４９］．

２．３　犗狋犺犲狉犳犪犮狋狅狉狊犪犳犳犲犮狋犻狀犵狆狉犲犱犻犮狋犻狅狀犪犮犮狌狉犪犮狔

Ｉｎｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎｍｅｔｈｏｄｓ，ｐｒｅｄｉｃｔｉｏｎ

ａｃｃｕｒａｃｙｉｓａｆｆｅｃｔｅｄｂｙｐｏｐｕｌａｔｉｏｎｓｉｚｅ（犖），ａｖｅｒ

ａｇｅｈｅｒｅｄｉｔａｒｙｏｆｔｒａｉｔｓ（犺
２）ａｎｄｍａｒｋｅｒｎｕｍｂｅｒｓ

（犖犕）
［５０］．Ｓｉｍｕｌａｔｉｏｎｓｔｕｄｉｅｓｓｈｏｗｅｄｔｈａｔｔｈｅｐｏｐ

ｕｌａｔｉｏｎｓｔｒｕｃｔｕｒｅｉｓａｌｓｏｃｒｕｃｉａｌｆｏｒｔｈｅｐｒｅｄｉｃｔｉｏｎ

ａｃｃｕｒａｃｙｉｎｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ
［２７］．

Ｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｉｎｃｒｅａｓｅｓ ｗｉｔｈ ｍａｒｋｅｒｓ

ｄｅｎｓｉｔｙ．Ｍａｒｋｅｒｓｎｕｍｂｅｒｏｎａｃｅｒｔａｉｎｌｅｎｇｔｈｇｅ

ｎｏｍｅａｌｓｏｄｉｒｅｃｔｌｙａｆｆｅｃｔｓｔｏｔａｌｉｎｆｏｒｍａｔｉｏｎｏｆｇｅ

ｎｅｔｉｃｍａｒｋｅｒｓ．ＩｆＳＳＲ ｍａｒｋｅｒｓｄｅｎｓｉｔｙｉｎｃｒｅａｓｅｓ

ｆｒｏｍ０．２５犖犲／犿狅狉犵犪狀 （犖犲，ｅｆｆｅｃｔｉｖｅｐｏｐｕｌａｔｉｏｎ

ｓｉｚｅ）ｔｏ２犖犲／犿狅狉犵犪狀，ｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｗｉｌｌｂｅ

ｉｍｐｒｏｖｅｄｆｒｏｍ０．６３ｔｏ０．８３．ＩｆＳＮＰｍａｒｋｅｒｓｄｅｎ

ｓｉｔｙｉｎｃｒｅａｓｅｓｆｒｏｍ１犖犲／犿狅狉犵犪狀ｔｏ８犖犲／犿狅狉犵犪狀，

ｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｗｉｌｌｂｅｉｍｐｒｏｖｅｄｆｒｏｍ０．６９ｔｏ

０．８６．Ｅｖｅｎａｔｔｈｅｈｉｇｈｅｓｔｔｅｓｔｅｄｄｅｎｓｉｔｉｅｓｏｆ２犖犲

ＳＳＲｍａｒｋｅｒｓｐｅｒＭｏｒｇａｎｏｒ８犖犲ＳＮＰｍａｒｋｅｒｓｐｅｒ

Ｍｏｒｇａｎ，ａｃｃｕｒａｃｙｈａｄｎｏｔｒｅａｃｈｅｄａｐｌａｔｅａｕ
［５］．

Ｍｅａｎｗｈｉｌｅ，ｍｏｒｅｍａｒｋｅｒｓｎｕｍｂｅｒ，ｍｏｒｅｅａｓｙｔｏ

ｇｅｔｔｈｅ Ｌｉｎｋａｇｅｄｉｓｅｑｕｉｌｉｂｒｉｕｍ （ＬＤ）ｍａｒｋｅｒｓ．

Ｅｍｉｌｙｆｏｕｎｄｔｈａｔｉｎｔｈｅｂｉｐａｒｅｎｔａｌｐｏｐｕｌａｔｉｏｎｓ，

ｔｈｅｒｅｗａｓｎｏｃｏｎｓｉｓｔｅｎｔｇａｉｎｉｎｇｅｎｏｍｅｗｉｄｅｐｒｅ

ｄｉｃｔｉｏｎ（狉犿狆）ｆｒｏｍｉｎｃｒｅａｓｉｎｇｍａｒｋｅｒｄｅｎｓｉｔｙａ

ｂｏｖｅｏｎｅｍａｒｋｅｒｐｅｒ１２．５ｃＭ
［２２］．Ｚｈａｏ犲狋犪犾．ｒｅ

ｖｅａｌｅｄｔｈａｔｔｈｅａｃｃｕｒａｃｙｗａｓｎｅａｒｌｙｒｅａｃｈｉｎｇａｐｌａｔ

ｅａｕａｔ８００ＳＮＰｓｗｈｅｎｔｈｅｎｕｍｂｅｒｏｆｍａｒｋｅｒｓｖａｒ

ｉｅｄｆｒｏｍ１００ｔｏ８００
［２３］．Ｔｈｅｒｅａｓｏｎｉｓｔｈａｔｇｅｎｏｍｅ

ｉｓｓｕｆｆｉｃｉｅｎｔｌｙｓａｔｕｒａｔｅｄ ｗｉｔｈ ｍａｒｋｅｒｓｗｈｅｎｔｈｅ

ｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙａｒｒｉｖｅｓａｔａｐｌａｔｅａｕ
［２８，５０］．Ｔｈｅ

ｎｕｍｂｅｒｏｆｍａｒｋｅｒｓｎｅｅｄｅｄｆｏｒａｃｃｕｒａｔｅｐｒｅｄｉｃｔｉｏｎｓ

ｏｆｇｅｎｏｔｙｐｉｃｖａｌｕｅｓｄｅｐｅｎｄｓｏｎｔｈｅｅｘｔｅｎｔｏｆｌｉｎｋ

ａｇｅｄｉｓｅｑｕｉｌｉｂｒｉｕｍ （ＬＤ）ｂｅｔｗｅｅｎ ｍａｒｋｅｒｓａｎｄ

ＱＴＬ
［４］ａｎｄａｌｓｏｏｎｔｈｅｇｅｒｍｐｌａｓｍｕｎｄｅｒｃｏｎｓｉｄｅｒａ

ｔｉｏｎ
［１８］．

２７２１ !　"　#　$　%　&　　　　　　　　　　　　　　　　　　　３６½



Ｄｉｆｆｅｒｅｎｔｍａｒｋｅｒｔｙｐｅｈａｓｄｉｆｆｅｒｅｎｔｐｏｌｙｍｏｒ

ｐｈｉｓｍｉｎｆｏｒｍａｔｉｏｎｃｏｎｔｅｎｔ（ＰＩＣ）．ＣｏｍｐａｒｉｎｇＳＳＲ

ａｎｄＳＮＰｍａｒｋｅｒｓ，ｔｈｅｙｆｏｕｎｄｔｈａｔｆｏｒｓｉｍｉｌａｒａｃ

ｃｕｒａｃｉｅｓ，ｔｈｅＳＮＰｍａｒｋｅｒｓｒｅｑｕｉｒｅｄａｄｅｎｓｉｔｙｏｆ２

ｔｏ３ｔｉｍｅｓｔｈａｔｏｆｔｈｅＳＳＲ
［５］．

Ｓｉｍｕｌａｔｉｏｎｓｔｕｄｉｅｓｓｈｏｗｅｄｔｈａｔｔｈｅｐｏｐｕｌａｔｉｏｎ

ｓｉｚｅｉｓｃｒｕｃｉａｌｆｏｒｔｈｅｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｉｎｇｅｎｏｍ

ｉｃｓｅｌｅｃｔｉｏｎ
［２７］．ＴｈｅｒｅｓｕｌｔｏｆＥｍｉｌｙ犲狋犪犾．ｉｎｄｉｃａｔｅｄ

ｔｈａｔｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙ狉犿狆ｉｎｃｒｅａｓｅｄａｓｐｏｐｕｌａ

ｔｉｏｎｓｉｚｅＮｉｎｃｒｅａｓｅｄ．Ｉｎｔｈｅｂｉｐａｒｅｎｔａｌｍａｉｚｅｐｏｐ

ｕｌａｔｉｏｎａｎｄｗｉｔｈｔｈｅｈｉｇｈｅｓｔｍａｒｋｅｒｓｎｕｍｂｅｒ犖犕，

（１２１３ｍａｒｋｅｒｓ）ａｎｄｈｅｒｅｄｉｔａｒｙ犺
２＝ ０．３０，ｔｈｅ

ｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｆｏｒｇｒａｉｎｙｉｅｌｄｗａｓ狉犿狆＝０．１９

ｗｉｔｈ犖＝４８，狉犿狆＝０．２６ｗｉｔｈ犖 ＝９６，ａｎｄ狉犿狆

＝０．３３ｗｉｔｈ犖 ＝１９２
［２２］．ＺｈａｏＹｕｓｈｅｎｇｏｂｓｅｒｖｅｄ

ａｍｏｎｏｔｏｎｉｃｉｎｃｒｅａｓｅｉｎｔｈｅｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｆｏｒ

ｇｒａｉｎｙｉｅｌｄｗｉｔｈｉｎｃｒｅａｓｉｎｇｐｏｐｕｌａｔｉｏｎｓｉｚｅｗｉｔｈｏｕｔ

ａｎｙｓｕｂｓｔａｎｔｉａｌｄｅｃｒｅａｓｅｉｎｔｈｅｓｌｏｐｅ
［２３］．Ｔｈｅｓｔｕｄｙ

ｏｆＢｅｒｎａｒｄｏａｌｓｏｉｎｄｉｃａｔｅｄｔｈａｔｌａｇｅｒｐｏｌｕａｔｉｏｎｓｉｚｅ

ｗｏｕｌｄｇｅｔｈｉｇｈｅｒｐｒｅｄｉｃｔｉｏｎｐｒｅｃｉｓｉｏｎ
［１４］．ＢｕｔＦ２

ｐｏｐｕｌａｔｉｏｎｓｉｚｅｏｆ犖犆０＝１４４ｗａｓｇｅｎｅｒａｌｌｙｓｕｆｆｉ

ｃｉｅｎｔ
［２１］．

Ｔｒａｉｎｉｎｇｐｏｐｕｌａｔｉｏｎｓｔｒｕｃｔｕｒｅｉｓａｌｓｏａｎｉｍ

ｐｏｒｔａｎｔｆａｃｔｏｒａｆｆｅｃｔｉｎｇｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｏｆｇｅ

ｎｏｍｉｃｓｅｌｅｃｔｉｏｎｆｏｒ ｍｕｌｔｉｐａｒｅｎｔａｌｐｏｐｕｌａｔｉｏｎｓ．

Ｔｒａｉｎｉｎｇｐｏｐｕｌａｔｉｏｎｓｔｒｕｃｔｕｒｅｓｅｔｍｅｔｈｏｄｓｃｏｎｃｌｕｄｅ

ｒａｎｄｏｍｓａｍｐｌｉｎｇ，ｕｎｉｄｉｒｅｃｔｉｏｎａｌｓａｍｐｌｉｎｇ（ｓｅｌｅｃ

ｔｉｎｇｉｎｄｉｖｉｄｕａｌｓｗｉｔｈｈｉｇｈｅｓｔｇｅｎｏｔｙｐｉｃｖａｌｕｅｓ），ｂｉ

ｄｉｒｅｃｔｉｏｎａｌｓａｍｐｌｉｎｇ （ｓｅｌｅｃｔｉｎｇｉｎｄｉｖｉｄｕａｌｓ ｗｉｔｈ

ｈｉｇｈｅｓｔｏｒｌｏｗｅｓｔｇｅｎｏｔｙｐｉｃｖａｌｕｅｓ）
［５０５１］．Ｔｈｉｓｂｉ

ｄｉｒｅｃｔｉｏｎａｌｓｅｌｅｃｔｉｏｎｓｈｏｗｅｄｔｏｂｅｍｕｃｈｍｏｒｅｐｏｗ

ｅｒｆｕｌｔｈａｎｒａｎｄｏｍｓａｍｐｌｉｎｇ
［５２］．ＹｕｓｈｅｎｇＺｈａｏｏｂ

ｓｅｒｖｅｄａｓｕｂｓｔａｎｔｉａｌｌｏｓｓｉｎｔｈｅａｃｃｕｒａｃｙｔｏｐｒｅｄｉｃｔ

ｇｅｎｏｍｉｃｂｒｅｅｄｉｎｇｖａｌｕｅｓｉｎｕｎｉｄｉｒｅｃｔｉｏｎａｌｓｅｌｅｃｔｅｄ

ｐｏｐｕｌａｔｉｏｎｓ．Ｂｉｄｉｒｅｃｔｉｏｎａｌｓｅｌｅｃｔｉｏｎｉｓａｖａｌｕａｂｌｅ

ａｐｐｒｏａｃｈｔｏｅｆｆｉｃｉｅｎｔｌｙｉｍｐｌｅｍｅｎｔｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ

ｉｎａｐｐｌｉｅｄｐｌａｎｔｂｒｅｅｄｉｎｇｐｒｏｇｒａｍｓ
［５３］．

Ｆｏｒｔｈｅｓａｍｅｔｒａｉｔｗｉｔｈｉｎｔｈｅｓａｍｅｐｏｐｕｌａｔｉｏｎ，

ｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙ（狉犿狆）ｗｉｌｌｒｅｍａｉｎｕｎｃｈａｎｇｅｄ

ｆｏｒｄｉｆｆｅｒｅｎｔｃｏｍｂｉｎａｔｉｏｎｓｏｆｐｏｐｕｌａｔｉｏｎｓｉｚｅ（犖）

ａｎｄｔｒａｉｔｈｅｒｅｄｉｔａｒｙ（犺
２）．Ｄｅｃｒｅａｓｅｏｎｈ２ｃａｎｂｅ

ｃｏｍｐｅｎｓａｔｅｄｂｙａｐｒｏｐｏｒｔｉｏｎａｌｉｎｃｒｅａｓｅｉｎ犖 （ａｎｄ

ｖｉｃｅｖｅｒｓａ）ｓｏｔｈａｔ狉犿狆ｉｓｍａｉｎｔａｉｎｅｄ．Ｏｎｔｈｅｏｔｈ

ｅｒｈａｎｄ，ｔｒａｉｔｓｗｉｔｈｉｎｉｔｉａｌｌｙｌｏｗｈ
２ｃａｎｂｅｅｖａｌｕａ

ｔｅｄｗｉｔｈｌａｒｇｅｒ犖ｏｒｔｈｅ犺
２ｆｏｒａｓｕｂｓｅｔｏｆｔｒａｉｔｓ

ｃａｎｂｅｉｎｃｒｅａｓｅｄｂｙｔｈｅｕｓｅｏｆａｄｄｉｔｉｏｎａｌｔｅｓｔｉｎｇｒｅ

ｓｏｕｒｃｅｓ．Ｄｉｆｆｅｒｅｎｔｔｒａｉｔｓ，ｈｏｗｅｖｅｒ，ｖａｒｙｉｎｔｈｅｉｒ

ｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｅｖｅｎ ｗｈｅｎ 犖，犺
２，ａｎｄ 犖犕

（ｍａｒｋｅｒｓｎｕｍｂｅｒ）ａｒｅｃｏｎｓｔａｎｔ．Ｙｉｅｌｄｔｒａｉｔｓｈａｄ

ｌｏｗｅｒｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙｔｈａｎｏｔｈｅｒｔｒａｉｔｓｄｅｓｐｉｔｅ

ｔｈｅｃｏｎｓｔａｎｔ犖，犺２，ａｎｄ犖犕．Ｓｉｍｕｌａｔｉｏｎｒｅｓｕｌｔｓ

ｉｎｄｉｃａｔｅｄｔｈａｔ狉犿狆ｉｓａｌｓｏｌｏｗｅｓｔｆｏｒｙｉｅｌｄｔｒａｉｔｓｅ

ｖｅｎｗｈｅｎｉｔｓ犺２ｉｓａｓｈｉｇｈａｓｏｔｈｅｒｔｒａｉｔｓ．Ｐｌａｎｔ

ｈｅｉｇｈｔａｎｄｌｏｄｇｉｎｇａｒｅａｌｗａｙｓｐｒｅｄｉｃｔｅｄｍｏｓｔａｃｃｕ

ｒａｔｅｌｙｆｏｌｌｏｗｅｄｂｙｆｌｏｗｅｒｉｎｇｔｉｍｅ
［２２］．Ｅｍｐｉｒｉｃａｌｅｖ

ｉｄｅｎｃｅａｎｄｅｘｐｅｒｉｅｎｃｅｏｎｔｈｅｐｒｅｄｉｃｔａｂｉｌｉｔｙｏｆｄｉｆ

ｆｅｒｅｎｔｔｒａｉｔｓａｒｅｎｅｃｅｓｓａｒｙｉｎｄｅｓｉｇｎｉｎｇｔｒａｉｎｉｎｇ

ｐｏｐｕｌａｔｉｏｎｓ．

３　Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｉｎｍａｉｚｅｂｒｅｅｄ

ｉｎｇ

３．１　犗狉犻犵犻狀犪狋犻狅狀狅犳犌犛犻狀犿犪犻狕犲

ＴｈｅｋｅｙｔｅｃｈｎｏｌｏｇｙｏｆＧＳｉｓｔｈｅｍａｉｚｅｈｙｂｒｉｄ

ｐｒｅｄｉｃｔｉｏｎｂｙＢＬＵＰｍｏｄｅｌｗｉｔｈｍａｒｋｅｒｓｅｆｆｅｃｔｓｏｒ

ｃｏｅｆｆｉｃｉｅｎｔｏｆｐａｒｅｎｔａｇｅ．Ｉｔｗａｓｕｓｅｄｔｏｐｒｅｄｉｃｔｔｈｅ

ｓｉｎｇｌｅｃｒｏｓｓｐｅｒｆｏｒｍａｎｃｅｉｎｍａｉｚｅｈｙｂｒｉｄｂｒｅｅｄｉｎｇ

ａｔｆｉｒｓｔ．ＴｈｅＢＬＵＰｍｏｄｅｌｉｓｅｓｔａｂｌｉｓｈｅｄｂａｓｅｄｏｎ

ｔｈｅｔｅｓｔｅｄｈｙｂｒｉｄｓｄａｔａａｎｄｔｈｅｍａｒｋｅｒｓｉｎｆｏｒｍａ

ｔｉｏｎｏｆｔｈｅｉｒｐａｒｅｎｔｓ．Ｔｈｅｐｅｒｆｏｒｍａｎｃｅｏｆｕｎｔｅｓｔｅｄ

ｈｙｂｒｉｄｓｉｓｐｒｅｄｉｃｔｅｄｂｙｔｈｅＢＬＵＰｍｏｄｅｌａｎｄｔｈｅ

ｍａｒｋｅｒｓｄａｔａｏｆｔｈｅｐａｒｅｎｔｓ
［５４］．

Ｂｅｒｎａｒｄｏｄｅｖｏｔｅｄｈｉｍｓｅｌｆｔｏｈｙｂｒｉｄｓｐｒｅｄｉｃｔｉｏｎ

ｂｙＢＬＵＰｍｏｄｅｌｉｎｍａｉｚｅ
［５５５８］．Ｔｈｅｃｏｅｆｆｉｃｉｅｎｔｏｆ

ｒｅｌａｔｉｖｅｂｅｔｗｅｅｎｔｈｅｏｒｙａｎｄａｃｔｕａｌｏｂｓｅｒｖａｔｉｏｎｗａｓ

０．６８８～０．８００ｂｙＲＦＬＰｍａｒｋｅｒｓ
［５４］．ＢＬＵＰｉｓｓｕｉｔ

ａｂｌｅｆｏｒｈｙｂｒｉｄｐｅｒｆｏｒｍａｎｃｅｐｒｅｄｉｃｔｉｏｎｓｉｎｃｅｔｈｅ

ｔｒａｉｔｏｎｌｙｈａｓｍｏｄｅｒａｔｅｈｅｒｉｔａｂｉｌｉｔｙ．Ｐｒｅｄｉｃｔｉｏｎａｃ

ｃｕｒａｃｙｏｆｍｏｌｅｃｕｌａｒｍａｒｋｅｒｅｆｆｅｃｔｓｉｓｈｉｇｈｅｒｔｈａｎ

ｐｈｙｌｏｇｅｎｅｔｉｃｒｅｌａｔｉｏｎｓｈｉｐ
［５８］．Ｗｉｔｈｔｈｅｄｅｖｅｌｏｐ

ｍｅｎｔｏｆｍｏｌｅｃｕｌａｒｍａｒｋｅｒｓ，ｎｅｗｍｏｌｅｃｕｌａｒｍａｒｋｅｒ

ｔｙｐｅｅｍｅｒｇｅｄ．Ｓｉｍｐｌｅｓｅｑｕｅｎｃｅｒｅｐｅａｔｓ（ＳＳＲ）ａｎｄ

ｓｉｎｇｌｅｎｕｃｌｅｏｔｉｄｅｐｏｌｙｍｏｒｐｈｉｓｍ（ＳＮＰ）ｗｅｒｅｗｉｄｅ

ｌｙｕｓｅｄ．ＭａｎｊｅＧｏｗｄａ犲狋犪犾．ｆｏｕｎｄｔｈａｔｐｒｅｄｉｃｔｉｏｎ

ａｃｃｕｒａｃｙｏｆｆｌｏｗｅｒｔｉｍｅａｎｄｐｌａｎｔｈｅｉｇｈｔｗａｓａｂｏｖｅ

０．８ｗｉｔｈＳＳＲ ｍａｒｋｅｒｓｉｎｍａｉｚｅ
［１９］．Ｒｅｓｅａｒｃｈｏｆ

Ｍａｓｓｍａｎ犲狋犪犾．ｉｎｄｉｃａｔｅｄｔｈａｔｐｒｅｄｉｃｔｉｏｎａｃｃｕｒａｃｙ

ｏｆｇｒａｉｎｙｉｅｌｄｗａｓ０．８，ａｎｄｒｏｏｔｌｏｇｇｉｎｇｒａｔｉｏｗａｓ

０．８７ｕｓｉｎｇＳＳＲｍａｒｋｅｒｓ
［５９］．Ｂｕｔｔｈｅｐｒｅｄｉｃｔｉｏｎ

３７２１６¾　　　　　　　　A　B

，
®

：
#$b,cdef67kGH�°§¨¶NOR<·k¸�

（
¿�

）



ｅｆｆｅｃｔｏｆｇｒａｉｎｙｉｅｌｄｗａｓｏｎｌｙ０．５０～０．６６，ａｎｄｒｏｏｔ

ｌｏｇｇｉｎｇｒａｔｉｏｗａｓｏｎｌｙ０．３１～０．４５ｗｉｔｈｃｏｅｆｆｉｃｉｅｎｔ

ｏｆｐａｒｅｎｔａｇｅ
［５５］．Ｔｈｅｎｉｔｉｎｄｉｃａｔｅｄｔｈａｔｍｏｌｅｃｕｌａｒ

ｍａｒｋｅｒｓｗａｓｍｏｒｅｓｕｉｔａｂｌｅｆｏｒｈｙｂｒｉｄｐｅｒｆｏｒｍａｎｃｅ

ｐｒｅｄｉｃｔｉｏｎｔｈａｎｃｏｅｆｆｉｃｉｅｎｔｏｆｐａｒｅｎｔａｇｅ．

ＴｈｅｎｓｃｉｅｎｔｉｓｔｓｆｏｕｎｄｔｈａｔＢＬＵＰｗａｓｎｏｔｏｎｌｙ

ｕｓｅｄｔｏｈｙｂｒｉｄｐｅｒｆｏｒｍａｎｃｅｐｒｅｄｉｃｔｉｏｎ，ｂｕｔａｌｓｏｔｈｅ

ｂｒｅｅｄｉｎｇｖａｌｕｅｏｆｉｎｄｉｖｉｄｕａｌｓａｍｏｎｇｔｈｅｍａｉｚｅｐｏｐ

ｕｌａｔｉｏｎ．ＳｏＢＬＵＰｗａｓｕｓｅｄｔｏｉｎｄｉｖｉｄｕａｌｓｓｅｌｅｃｔｉｏｎ

ｏｆＦ２ｐｏｐｕｌａｔｉｏｎｉｎｓｅｌｅｃｔｉｏｎａｎｄｂｒｅｅｄｉｎｇｏｆｉｎｂｒｅｄ

ｌｉｎｅｓ．Ｈｙｂｒｉｄｐｅｒｆｏｒｍａｎｃｅｐｒｅｄｉｃｔｉｏｎｌａｙｔｈｅｆｏｕｎ

ｄａｔｉｏｎｆｏｒｔｈｅｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎｉｎｍａｉｚｅ．

３．２　犃狆狆犾犻犮犪狋犻狅狀狅犳犵犲狀狅犿犻犮狊犲犾犲犮狋犻狅狀犻狀犿犪犻狕犲

Ｂｅｒｎａｒｄｏ’ｓｌａｂｏｒａｔｏｒｙｂｅｇａｎｔｏｓｔｕｄｙａｐｐｌｙｉｎｇ

ＧＳｔｏｍａｉｚｅｂｒｅｅｄｉｎｇｉｎＭｉｎｎｅｓｏｔａＵｎｉｖｅｒｓｉｔｙｏｆ

Ａｍｅｒｉｃａ
［２１］．Ｔｈｅｙｄｉｄｐｌｅｎｔｙｏｆｓｉｍｕｌａｔｉｏｎａｎｄｅｍ

ｐｉｒｉｃａｌｅｘｐｅｒｉｍｅｎｔｓ．ＰｉｅｐｈｏｉｎＧｅｒｍａｎａｎｄＲｏｂｅｒｔ

ｉｎＢｒａｚｉｌａｌｓｏｔｒｉｅｄｔｏｓｔｕｄｙｕｓｉｎｇＧＳｉｎ ｍａｉｚｅ

ｂｒｅｅｄｉｎｇ
［６０６１］．ＧＳｕｔｉｌｉｔｙｉｎｍａｉｚｅｂｒｅｅｄｉｎｇｃｏｎｓｉｓｔ

ｏｆｔｗｏｓｉｄｅｓ，ｈｙｂｒｉｄｓｐｅｒｆｏｒｍａｎｃｅｐｒｅｄｉｃｔｉｏｎａｎｄ

ｉｍｐｒｏｖｅｍｅｎｔｏｆｉｎｂｒｅｄｌｉｎｅｓ．Ｈｅｄｅｖｏｔｅｄｔｏｉｎｂｒｅｄ

ｌｉｎｅｓｉｍｐｒｏｖｅｍｅｎｔｕｓｉｎｇＧＳ．ＴｈｅＢＬＵＰｍｏｄｅｌｏｆ

ｂｉｐａｒｅｎｔａｌｐｏｐｕｌａｔｉｏｎｓｆｒｏｍｔｗｏｉｎｂｒｅｄｌｉｎｅｓｉｓｏｎ

ｌｙｓｕｉｔｆｏｒｔｈｅｐｒｏｇｅｎｙｏｆｔｈｅｐａｒｅｎｔｓ．Ｇｅｎｏｍｅｗｉｄｅ

ｓｅｌｅｃｔｉｏｎ ａｓ ｐｒｏｐｏｓｅｄ ｉｎ ｍａｉｚｅ ｉｎｖｏｌｖｅｓ ｔｗｏ

ｓｔｅｐｓ
［２１］．Ｆｉｒｓｔ，ａｓｅｇｒｅｇａｔｉｎｇｍａｉｚｅｐｏｐｕｌａｔｉｏｎｉｓ

ｇｅｎｏｔｙｐｅｄａｎｄｅｖａｌｕａｔｅｄｆｏｒｔｅｓｔｃｒｏｓｓｐｅｒｆｏｒｍａｎｃｅ

ｏｆＦ３ｆａｍｉｌｙ．Ｂａｓｅｄｏｎｔｈｅｇｅｎｏｔｙｐｉｃａｎｄｐｈｅｎｏｔｙｐ

ｉｃｄａｔａ，ｂｒｅｅｄｉｎｇｖａｌｕｅｓａｓｓｏｃｉａｔｅｄｗｉｔｈａｌａｒｇｅｓｅｔ

ｏｆｍａｒｋｅｒｓ（ｅ．ｇ．，２５６ｔｏ５１２ｍａｒｋｅｒｓ）ａｒｅｃａｌｃｕ

ｌａｔｅｄｆｏｒｔｈｅｔｒａｉｔｓｏｆｉｎｔｅｒｅｓｔ．Ｓｉｇｎｉｆｉｃａｎｃｅｔｅｓｔｓ

ｆｏｒｍａｒｋｅｒｓａｒｅｎｏｔｕｓｅｄ，ａｎｄｔｈｅｅｆｆｅｃｔｓｏｆａｌｌ

ｍａｒｋｅｒｓａｒｅｆｉｔｔｅｄａｓｒａｎｄｏｍｅｆｆｅｃｔｓｉｎａｌｉｎｅａｒ

ｍｏｄｅｌｂｙｂｅｓｔｌｉｎｅａｒｕｎｂｉａｓｅｄｐｒｅｄｉｃｔｉｏｎ（ＢＬＵＰ）．

Ｓｅｃｏｎｄ，ｔｗｏｏｒｔｈｒｅｅｇｅｎｅｒａｔｉｏｎｓｏｆｓｅｌｅｃｔｉｏｎｂａｓｅｄ

ｏｎａｌｌｍａｒｋｅｒｓａｒｅｃｏｎｄｕｃｔｅｄｉｎａｙｅａｒｒｏｕｎｄｎｕｒｓ

ｅｒｙ（ｅ．ｇ．，ＨａｗａｉｉｏｒＰｕｅｒｔｏＲｉｃｏ）ｏｒｇｒｅｅｎｈｏｕｓｅ．

Ｔｒａｉｔｖａｌｕｅｓａｒｅｐｒｅｄｉｃｔｅｄａｓｔｈｅｓｕｍｏｆａｎｉｎｄｉｖｉｄ

ｕａｌｐｌａｎｔ’ｓｍａｒｋｅｒｖａｌｕｅｓａｃｒｏｓｓａｌｌｍａｒｋｅｒｓ，ａｎｄ

ｓｅｌｅｃｔｉｏｎｉｓｓｕｂｓｅｑｕｅｎｔｌｙｂａｓｅｄｏｎｔｈｅｓｅｇｅｎｏｍｅ

ｗｉｄｅｐｒｅｄｉｃｔｉｏｎ．Ａｃｃｏｒｄｉｎｇｔｏｔｈｅｓｔｅｐｓ，Ｅｍｉｌｙ

（２０１３ｂ）ｉｎｔｒｏｇｒｅｓｓｅｄｓｅｍｉｄｗａｒｆｇｅｒｍｐｌａｓｍｔｏＵ．

Ｓ．Ｃｏｒｎｂｅｌｔｉｎｂｒｅｄａｎｄｆｏｕｎｄｔｈａｔｇｅｎｏｍｅｗｉｄｅｓｅ

ｌｅｃｔｉｏｎｆｒｏｍＣｙｃｌｅ１ｕｎｔｉｌＣｙｃｌｅ５ｅｉｔｈｅｒｍａｉｎｔａｉｎｅｄ

ｏｒｉｍｐｒｏｖｅｄｏｎｔｈｅｇａｉｎｓｆｒｏｍｐｈｅｎｏｔｙｐｉｃｓｅｌｅｃｔｉｏｎ

ａｃｈｉｅｖｅｄｉｎＣｙｃｌｅ１
［６２］．

ＴｈｅｒｅｓｕｌｔｓｏｆＢｅｒｎａｒｄｏｉｎｄｉｃａｔｅｄｔｈａｔａｕｓｅｆｕｌ

ｓｔｒａｔｅｇｙｆｏｒｔｈｅｒａｐｉｄｉｍｐｒｏｖｅｍｅｎｔｏｆａｎａｄａｐｔｅｄ×

ｅｘｏｔｉｃｃｒｏｓｓｉｎｖｏｌｖｅｓ７ｔｏ８ｃｙｃｌｅｓｏｆｇｅｎｏｍｅｗｉｄｅ

ｓｅｌｅｃｔｉｏｎｓｔａｒｔｉｎｇｉｎｔｈｅＦ２
［１４］．Ｂｅｎｊａｍｉｎ犲狋犪犾．

ｄｅｍｏｎｓｔｒａｔｅｄｔｈａｔｐｒｏｇｒｅｓｓｉｖｅｓｅｌｆｉｎｇｈａｄａｓｉｇｎｉｆｉ

ｃａｎｔａｎｄ ｐｏｓｉｔｉｖｅｉｍｐａｃｔｏｎ ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ

ｇａｉｎｓ．Ｉｎｐａｒｔｉｃｕｌａｒ，ｓｅｌｆｉｎｇｔｏｔｈｅＦ８ｐｒｏｄｕｃｅｄａ

７２％ｉｎｃｒｅａｓｅｏｖｅｒＦ２ｇａｉｎｓ
［６３］．Ｈｏｗｅｖｅｒ，ｍｏｓｔｏｆ

ｔｈｅｇａｉｎｓａｒｅｒｅａｌｉｚｅｄｂｙｔｈｅＦ５ｇｅｎｅｒａｔｉｏｎ（９５％ｏｆ

ｔｈｅＦ８ｇａｉｎｓ）．ＡｌｓｏｎｏｔｅｔｈａｔｔｈｅＦ８ａｎｄＤＨｐｅｒ

ｆｏｒｍｅｄｓｉｍｉｌａｒｌｙ，ｃｏｎｓｉｓｔｅｎｔｗｉｔｈｐｒｅｖｉｏｕｓｏｂｓｅｒ

ｖａｔｉｏｎｓ
［６４］．

ＩｎｔｈｅｒｅｓｅａｒｃｈｏｆＢｅｒｎａｒｄｏ，ｔｈｅｔｒａｉｎｉｎｇｐｏｐ

ｕｌａｔｉｏｎｉｓｔｈｅｓｐｅｃｉｆｉｃｂｉｐａｒｅｎｔａｌｐｏｐｕｌａｔｉｏｎｓｆｒｏｍ

ｔｈｅｔｗｏｐａｒｅｎｔａｌｌｉｎｅｓ，ｓｏｔｈｅＢＬＵＰｍｏｄｅｌｉｓｓｕｉｔ

ｆｏｒｔｈｅｐｒｏｇｅｎｙｏｆｔｈｅｔｗｏｉｎｂｒｅｄｌｉｎｅｓ．Ｏｔｈｅｒｅｘ

ｐｅｒｉｍｅｎｔｓｏｆＧＳｉｎｍａｉｚｅａｒｅａｂｏｕｔｍｕｌｔｉｐａｒｅｎｔａｌ

ｐｏｐｕｌａｔｉｏｎｓａｓｔｒａｉｎｉｎｇｐｏｐｕｌａｔｉｏｎ．ＳｔｕｄｙｏｆＹｕｓｈ

ｅｎｇＺｈａｏｗａｓｂａｓｅｄｏｎｅｘｐｅｒｉｍｅｎｔａｌｄａｔａｏｆｓｉｘ

ｓｅｇｒｅｇａｔｉｎｇｐｏｐｕｌａｔｉｏｎｓｆｒｏｍａｈａｌｆｄｉａｌｌｅｌｍａｔｉｎｇ

ｄｅｓｉｇｎ．Ａｓｆｏｒｍａｉｚｅｕｐｔｏｔｈｒｅｅｇｅｎｅｒａｔｉｏｎｓａｒｅ

ｆｅａｓｉｂｌｅｐｅｒｙｅａｒ，ｓｅｌｅｃｔｉｏｎｇａｉｎｐｅｒｕｎｉｔｔｉｍｅｉｓ

ｈｉｇｈａｎｄ，ｃｏｎｓｅｑｕｅｎｔｌｙ，ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｈｏｌｄｓ

ｇｒｅａｔｐｒｏｍｉｓｅｆｏｒ ｍａｉｚｅｂｒｅｅｄｉｎｇ ｐｒｏｇｒａｍｓ
［２３］．

Ｔｈｅｓｅｒｅｓｕｌｔｏｆｔｈｅｓｔｕｄｙｍｉｇｈｔｂｅａｓｇｅｎｏｍｉｃｐｒｅ

ｄｉｃｔｉｏｎｍｏｄｅｌｆｏｒｆｕｒｔｈｅｒｂｒｅｅｄｉｎｇｅｌｉｔｅｍａｉｚｅｌｉｎｅｓ

ｂｅｔｗｅｅｎｔｈｅｓｉｘｐｏｐｕｌａｔｉｏｎｓ．ＩｎｔｈｅｓｔｕｄｙｏｆＶａｎ

ｅｓｓａ犲狋犪犾．，ｍａｒｋｅｒｅｆｆｅｃｔｓｅｓｔｉｍａｔｅｄｉｎ２５５ｄｉｖｅｒｓｅ

ｍａｉｚｅｈｙｂｒｉｄｓｗｅｒｅｕｓｅｄｔｏｐｒｅｄｉｃｔｇｒａｉｎｙｉｅｌｄ，ａｎ

ｔｈｅｓｉｓｄａｔｅ，ａｎｄａｎｔｈｅｓｉｓｓｉｌｋｉｎｇｉｎｔｅｒｖａｌｗｉｔｈｉｎｔｈｅ

ｄｉｖｅｒｓｉｔｙｐａｎｅｌａｎｄｔｅｓｔｃｒｏｓｓｐｒｏｇｅｎｉｅｓｏｆ３０Ｆ２ｄｅ

ｒｉｖｅｄｌｉｎｅｓｆｒｏｍｅａｃｈｏｆｆｉｖｅｐｏｐｕｌａｔｉｏｎｓ
［３６］．Ｐｏｔｅｎ

ｔｉａｌｕｓｅｓｆｏｒｇｅｎｏｍｉｃｐｒｅｄｉｃｔｉｏｎｉｎ ｍａｉｚｅｈｙｂｒｉｄ

ｂｒｅｅｄｉｎｇａｒｅｄｉｓｃｕｓｓｅｄｅｍｐｈａｓｉｚｉｎｇｔｈｅｎｅｅｄｏｆ（１）

ａｃｌｅａｒｄｅｆｉｎｉｔｉｏｎｏｆｔｈｅｂｒｅｅｄｉｎｇｓｃｅｎａｒｉｏｉｎｗｈｉｃｈ

ｇｅｎｏｍｉｃｐｒｅｄｉｃｔｉｏｎｓｈｏｕｌｄｂｅａｐｐｌｉｅｄ（ｉ．ｅ．，ｐｒｅｄｉｃ

ｔｉｏｎａｍｏｎｇｏｒｗｉｔｈｉｎｐｏｐｕｌａｔｉｏｎｓ），（２）ａｄｅｔａｉｌｅｄ

ａｎａｌｙｓｉｓｏｆｔｈｅｐｏｐｕｌａｔｉｏｎｓｔｒｕｃｔｕｒｅｂｅｆｏｒｅｐｅｒ

ｆｏｒｍｉｎｇｃｒｏｓｓｖａｌｉｄａｔｉｏｎ，ａｎｄ（３）ｌａｒｇｅｒｔｒａｉｎｉｎｇ

ｓｅｔｓｗｉｔｈｓｔｒｏｎｇｇｅｎｅｔｉｃｒｅｌａｔｉｏｎｓｈｉｐｔｏｔｈｅｖａｌｉｄａ

ｔｉｏｎｓｅｔ．

４７２１ !　"　#　$　%　&　　　　　　　　　　　　　　　　　　　３６½



４　Ｆｕｔｕｒｅｒｅｓｅａｒｃｈｉｎｍａｉｚｅｂｒｅｅｄｉｎｇ

ＧＳｉｓｊｕｓｔｂｅｇｉｎｎｉｎｇｔｏｂｅｉｍｐｌｅｍｅｎｔｅｄ，ｂｕｔｉｔ

ｗｉｌｌｔａｋｅｌｏｎｇｔｉｍｅｔｏｂｅｕｓｅｄｉｎｍａｉｚｅｂｒｅｅｄｉｎｇ．Ｉｎ

ｐｒｅｖｉｏｕｓｓｔｕｄｙ，ｔｒａｉｎｉｎｇｐｏｐｕｌａｔｉｏｎｗａｓｏｎｌｙｆｒｏｍ

ｓｅｖｅｒａｌｉｎｂｒｅｄｌｉｎｅｓ，ｅｖｅｎｉｆｔｗｏｉｎｂｒｅｄｌｉｎｅｓ．Ｉｔ

ｃｏｕｌｄｎｔｂｅｉｍｐｌｅｍｅｎｔｅｄｂｙｏｔｈｅｒｂｒｅｅｄｉｎｇｐｒｏ

ｇｒａｍ．Ｆｕｔｕｒｅｒｅｓｅａｒｃｈｓｈｏｕｌｄｆｏｃｕｓｏｎｔｗｏｓｉｄｅｓｏｆ

ｗｏｒｋ．Ｆｉｒｓｔ，ｗｅｓｈｏｕｌｄｃｏｍｍｉｔｔｏｂｕｉｌｄａｇｅｎｅｒａｌ

ｉｚｅｄｐｒｅｄｉｃｔｉｏｎｍｏｄｅｌｆｏｒｓｏｍｅｋｉｎｄｓｏｆｉｎｂｒｅｄｌｉｎｅｓ

ｓｕｃｈａｓｙｉｅｌｄ，ｑｕａｌｉｔｙａｎｄｓｏｏｎ．Ｂｕｔｔｈｅｓｅｔｒａｉｔｓ

ｗｅｒｅｃｏｍｐｌｅｘｃｏｍｐｏｓｅｄｏｆａｇｒｅａｔｄｅａｌｏｆｇｅｎｅｓ．

ＴｒａｄｉｔｉｏｎａｌＭＡＳｔｅｃｈｎｏｌｏｇｙｃｏｕｌｄｎｔｒｅａｌｉｚｅｔｈｅ

ｔｒａｉｔｓｓｅｌｅｃｔｉｏｎｉｎｍａｉｚｅｂｒｅｅｄｉｎｇ．９７３Ｐｌａｎ“Ｂａｓｉｃ

ｓｔｕｄｙｏｎｂｒｅｅｄｉｎｇｏｆｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎｏｆｙｉｅｌｄ

ａｎｄｑｕａｌｉｔｙｔｒａｉｔｓｉｎｍａｉｚｅ”ｈａｓｂｅｅｎｃａｒｒｉｅｄｏｕｔｉｎ

２０１４．Ｔｈｅｐｌａｎｗｉｌｌｓｙｓｔｅｍａｔｉｃｌｙａｎａｌｙｚｅｔｈｅｇｅ

ｎｅｔｉｃｂａｓｉｓｏｆｍａｉｚｅｙｉｅｌｄａｎｄｑｕａｌｉｔｙ，ａｎｄｔｈｅｎ

ｂｕｉｌｄｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎｂｒｅｅｄｉｎｇ ｍｏｄｅｌ．Ｉｔ

ｗｉｌｌａｆｆｏｒｄｎｅｗｔｅｃｈｎｏｌｏｇｙｆｏｒ ｍａｉｚｅｂｒｅｅｄｉｎｇ．

Ｓｅｏｎｄ，ｉｎＣｈｉｎａ，ａｂｉｏｔｉｃｓｔｒｅｓｓｔｏｌｅｒａｎｃｅａｌｓｏｒｅ

ｄｕｃｅｓｔｈｅ ｙｉｅｌｄ ｓｅｒｉｏｕｓｌｙ ｉｎ ｍａｉｚｅ ｅｓｐｅｃｉａｌｌｙ

ｄｒｏｕｇｈｔｔｏｌｅｒａｎｃｅ．Ｄｒｏｕｇｈｔｉｓｔｈｅｆｏｒｅｍｏｓｔｆａｃｔｏｒ

ｒｅｓｔｒｉｃｔｉｎｇｍａｉｚｅｐｒｏｄｕｃｔｉｏｎ，ｏｆｔｅｎｒｅｓｕｌｔｉｎｇｉｎ２０

－５０％ ｍａｉｚｅｙｉｅｌｄｒｅｄｕｃｔｉｏｎｅｖｅｒｙｙｅａｒｉｎＣｈｉ

ｎａ
［６５］．Ｉｆｗｅｅｓｔａｂｌｉｓｈｐｒｅｄｉｃｔｉｏｎｍｏｄｅｌｏｆｄｒｏｕｇｈｔ

ｔｏｌｅｒａｎｃｅ，ｉｔｗｉｌｌａｆｆｏｒｄｔｈｅｔｈｅｏｒｙａｎｄｔｅｃｈｎｏｌｏｇｙ

ｓｕｐｐｏｒｔｏｆｍａｉｚｅｂｒｅｅｄｉｎｇ．Ｃｏｎｓｅｑｕｅｎｔｌｙ，ｏｕｒｒｅ

ｓｅａｒｃｈｔｅａｍｗｉｌｌｃａｒｒｉｅｄｏｕｔｓｔｕｄｙｏｎｔｈｅｇｅｎｏｍｉｃ

ｓｅｌｅｃｔｉｏｎｐｒｏｇｒａｍｏｆｄｒｏｕｇｈｔｔｏｌｅｒａｎｃｅ．

犚犲犳犲狉犲狀犮犲狊：

［１］　ＳＴＵＢＥＲＣＷ，ＰＯＬＡＣＣＯＭ，ＳＥＮＩＯＲＭＬ．Ｓｙｎｅｒｇｙｏｆｅｍ

ｐｉｒｉｃａｌｂｒｅｅｄｉｎｇ，ｍａｒｋｅｒａｓｓｉｓｔｅｄｓｅｌｅｃｔｉｏｎ，ａｎｄｇｅｎｏｍｉｃｓｔｏ

ｉｎｃｒｅａｓｅｃｒｏｐｙｉｅｌｄｐｏｔｅｎｔｉａｌ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，１９９９，３９：

１５７１１５８３．

［２］　ＭＯＯＳＥＳＰ，ＭＵＭＭＲＨ．Ｍｏｌｅｃｕｌａｒｐｌａｎｔｂｒｅｅｄｉｎｇａｓｔｈｅ

ｆｏｕｎｄａｔｉｏｎｆｏｒ２１ｓｔｃｅｎｔｕｒｙｃｒｏｐｉｍｐｒｏｖｅｍｅｎｔ［Ｊ］．犘犾犪狀狋

犘犺狔狊犻狅犾狅犵狔，２００８，１４７：９６９９７７．

［３］　ＢＥＲＮＡＲＤＯＲ．Ｍｏｌｅｃｕｌａｒｍａｒｋｅｒｓａｎｄｓｅｌｅｃｔｉｏｎｆｏｒｃｏｍｐｌｅｘ

ｔｒａｉｔｓｉｎｐｌａｎｔｓ：ｌｅａｒｎｉｎｇｆｒｏｍｔｈｅｌａｓｔ２０ｙｅａｒｓ［Ｊ］．犆狉狅狆犛犮犻

犲狀犮犲，２００８，４８：１６４９１６６４．

［４］　ＭＥＵＷＩＳＳＥＮＴＨ，ＨＡＹＥＳＢＪ，ＧＯＤＤＡＲＤ ＭＥ．Ｐｒｅｄｉｃ

ｔｉｏｎｏｆｔｏｔａｌｇｅｎｅｔｉｃｖａｌｕｅｕｓｉｎｇｇｅｎｏｍｅｗｉｄｅｄｅｎｓｅｍａｒｋｅｒ

ｍａｐｓ［Ｊ］．犌犲狀犲狋犻犮狊，２００１，１５７：１８１９１８２９．

［５］　ＪＡＮＮＩＮＫＪＬ，ＬＯＲＥＮＺＡＪ，ＩＷＡＴＡＨ．Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ

ｉｎｐｌａｎｔｂｒｅｅｄｉｎｇ：ｆｒｏｍｔｈｅｏｒｙｔｏｐｒａｃｔｉｃｅ［Ｊ］．犅狉犻犲犳犻狀犵狊犻狀

犉狌狀犮狋犻狅狀犪犾犌犲狀狅犿犻犮狊，２０１０，９（２）：１６６１７７．

［６］　ＨＥＦＦＮＥＲＥＬ，ＪＡＮＮＩＮＫＪＬ，ＩＷＡＴＡＨ，犲狋犪犾．Ｇｅｎｏｍｉｃ

ｓｅｌｅｃｔｉｏｎａｃｃｕｒａｃｙｆｏｒｇｒａｉｎｑｕａｌｉｔｙｔｒａｉｔｓｉｎｂｉｐａｒｅｎｔａｌｗｈｅａｔ

ｐｏｐｕｌａｔｉｏｎｓ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，２０１１，５１：２５９７２６０６．

［７］　ＨＥＦＦＮＥＲＥＬ，ＳＯＲＲＥＬＬＳＭＥ，ＪＡＮＮＩＮＫＪＬ．Ｇｅｎｏｍｉｃ

ｓｅｌｅｃｔｉｏｎｆｏｒｃｒｏｐｉｍｐｒｏｖｅｍｅｎｔ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，２００９，４９：

１１２．

［８］　ＭＡＹＯＲＰＪ，ＢＥＲＮＡＲＤＯＲ．Ｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎａｎｄ

ｍａｒｋｅｒａｓｓｉｓｔｅｄｒｅｃｕｒｒｅｎｔｓｅｌｅｃｔｉｏｎｉｎｄｏｕｂｌｅｄｈａｐｌｏｉｄｖｅｒｓｕｓ

Ｆ２ｐｏｐｕｌａｔｉｏｎｓ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，２００９，４９：１７１９１７２５．

［９］　ＭＡＳＳＭＡＮＪＭ，ＪＵＮＧＨＪＧ，ＢＥＲＮＡＲＤＯＲ．Ｇｅｎｏｍｅ

ｗｉｄｅｓｅｌｅｃｔｉｏｎｖｅｒｓｕｓｍａｒｋｅｒａｓｓｉｓｔｅｄｒｅｃｕｒｒｅｎｔｓｅｌｅｃｔｉｏｎｔｏｉｍ

ｐｒｏｖｅｇｒａｉｎｙｉｅｌｄａｎｄｓｔｏｖｅｒｑｕａｌｉｔｙｔｒａｉｔｓｆｏｒｃｅｌｌｕｌｏｓｉｃｅｔｈａｎｏｌ

ｉｎｍａｉｚｅ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，２０１２，５３（１）：５８６６．

［１０］　ＳＣＨＡＥＦＦＥＲＬＲ．Ｓｔｒａｔｅｇｙｆｏｒａｐｐｌｙｉｎｇｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃ

ｔｉｏｎｉｎｄａｉｒｙｃａｔｔｌｅ［Ｊ］．犑狅狌狉狀犪犾狅犳犃狀犻犿犪犾犅狉犲犲犱犻狀犵犌犲狀犲狋犻犮，

２００６，１２３：２１８２２３．

［１１］　ＧＯＤＤＡＲＤＭＥ，ＨＡＹＥＳＢＪ．Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ［Ｊ］．犑狅狌狉

狀犪犾狅犳犪狀犻犿犪犾犅狉犲犲犱犻狀犵犌犲狀犲狋犻犮狊，２００７，１２４：３２３３３０．

［１２］　ＤＡＥＴＷＹＬＥＲ Ｈ Ｄ，ＶＩＬＬＡＮＵＥＶＡ Ｂ，ＢＩＪＭＡ Ｐ．Ｉｎ

ｂｒｅｅｄｉｎｇｉｎｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎ［Ｊ］．犑狅狌狉狀犪犾狅犳犃狀犻犿犪犾

犅狉犲犲犱犻狀犵犌犲狀犲狋犻犮，２００７，１２４：３６９３７６．

［１３］　ＴＵＬ，ＷＯＯＬＬＩＡＭＳＪＡ，ＳＩＧＢＪＯＲＮＬ．Ｔｈｅａｃｃｕｒａｃｙｏｆ

ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｉｎｎｏｒｗｅｇｉａｎｒｅｄｃａｔｔｌｅａｓｓｅｓｓｅｄｂｙｃｒｏｓｓ

ｖａｌｉｄａｔｉｏｎ［Ｊ］．犌犲狀犲狋犻犮狊，２００９，１８３：１１１９１１２６．

［１４］　ＢＥＲＮＡＲＤＯＲ．Ｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎｆｏｒｒａｐｉｄｉｎｔｒｏｇｒｅｓ

ｓｉｏｎｏｆｅｘｏｔｉｃｇｅｒｍｐｌａｓｍｉｎｍａｉｚｅ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，２００９，

４９：４１９４２５．

［１５］　ＨＡＮＳＤＤ，ＢＡＮＳＡＬＵＫ，ＢＡＲＩＡＮＡＨＳ，犲狋犪犾．Ｇｅｎｏｍ

ｉｃｐｒｅｄｉｃｔｉｏｎｆｏｒｒｕｓｔｒｅｓｉｓｔａｎｃｅｉｎｄｉｖｅｒｓｅｗｈｅａｔｌａｎｄｒａｃｅｓ［Ｊ］．

犜犺犲狅狉狔犪狀犱犃狆狆犾犻犲犱犌犲狀犲狋犻犮狊，２０１４，１２７：１７９５１８０３．

［１６］　ＭＡＲＩＥＤ，ＢＯＵＶＥＴＪＭ．Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｉｎｔｒｅｅｂｒｅｅｄ

ｉｎｇ：ｔｅｓｔｉｎｇａｃｃｕｒａｃｙｏｆｐｒｅｄｉｃｔｉｏｎ ｍｏｄｅｌｓｉｎｃｌｕｄｉｎｇｄｏｍｉ

ｎａｎｃｅｅｆｆｅｃｔ［Ｊ］．犅犕犆犘狉狅犮犲犲犱犻狀犵狊，２０１１，５（Ｓｕｐｐｌｙ７）：１２．

［１７］　ＷＲＳＣＨＵＭＴ，ＲＥＩＦＪＣ，ＫＲＡＦＴＴ，犲狋犪犾．Ｇｅｎｏｍｉｃｓｅ

ｌｅｃｔｉｏｎｉｎｓｕｇａｒｂｅｅｔｂｒｅｅｄｉｎｇｐｏｐｕｌａｔｉｏｎｓ［Ｊ］．犅犕犆犌犲狀犲狋犻犮狊，

２０１３，１４：８５９２．

［１８］　ＺＨＯＮＧＳＱ，ＤＥＫＫＥＲＳＪＣＭ，ＦＥＲＮＡＮＤＯＲＬ，犲狋犪犾．

Ｆａｃｔｏｒｓａｆｆｅｃｔｉｎｇａｃｃｕｒａｃｙｆｒｏｍｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｉｎｐｏｐｕｌａ

ｔｉｏｎｓｄｅｒｉｖｅｄｆｒｏｍｍｕｌｔｉｐｌｅｉｎｂｒｅｄｌｉｎｅｓ：ａｂａｒｌｅｙｃａｓｅｓｔｕｄｙ

［Ｊ］．犌犲狀犲狋犻犮狊，２００９，１８２（１）：３５５３６４．

［１９］　ＧＯＷＤＡＭ，ＺＨＡＯＹＳ，ＭＡＵＲＥＲＨＰ，犲狋犪犾．Ｂｅｓｔｌｉｎｅａｒ

５７２１６¾　　　　　　　　A　B

，
®

：
#$b,cdef67kGH�°§¨¶NOR<·k¸�

（
¿�

）



ｕｎｂｉａｓｅｄｐｒｅｄｉｃｔｉｏｎｏｆｔｒｉｔｉｃａｌｅｈｙｂｒｉｄｐｅｒｆｏｒｍａｎｃｅ［Ｊ］．犈狌

狆犺狔狋犻犮犪，２０１３，１９１：２２３２３０．

［２０］　ÀÁÂ

，
ÃÄÅ

，
ÆÇ]

，
®．#${jrªb,cdef

GH�°

［Ｊ］．![34%&

，２０１２，２５（４）：１５１０１５１４．

ＷＵＹＳ，ＳＨＡＯＪＭ，ＺＨＯＵＲＹ，犲狋犪犾．Ｒｅｖｉｅｗｓｏｆｇｅ

ｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎｆｏｒｑｕａｎｔｉｔａｔｉｖｅｔｒａｉｔｓｉｎｐｌａｎｔｓ［Ｊ］．

犛狅狌狋犺狑犲狊狋犆犺犻狀犪犑狅狌狉狀犪犾狅犳犃犵狉犻犮狌犾狋狌狉犪犾犛犮犻犲狀犮犲狊，２０１２，２５

（４）：１５１０１５１４．

［２１］　ＢＥＲＮＡＲＤＯＲ，ＹＵＪ．Ｐｒｏｓｐｅｃｔｓｆｏｒｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎ

ｆｏｒｑｕａｎｔｉｔａｔｉｖｅｔｒａｉｔｓｉｎｍａｉｚｅ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，２００７，４７：

１０８２１０９０．

［２２］　ＥＭＩＬＹＣ，ＢＥＲＮＡＲＤＯＲ．Ａｃｃｕｒａｃｙｏｆｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃ

ｔｉｏｎｆｏｒｄｉｆｆｅｒｅｎｔｔｒａｉｔｓｗｉｔｈｃｏｎｓｔａｎｔｐｏｐｕｌａｔｉｏｎｓｉｚｅ，ｈｅｒｉｔａ

ｂｉｌｉｔｙ，ａｎｄｎｕｍｂｅｒｏｆｍａｒｋｅｒｓ［Ｊ］．犘犾犪狀狋犌犲狀狅犿犲，２０１３ａ，６

（１）：１７．

［２３］　ＺＨＡＯＹＳ，ＧＯＷＤＡＭ，ＬＩＵ ＷＸ，犲狋犪犾．Ａｃｃｕｒａｃｙｏｆｇｅ

ｎｏｍｉｃｓｅｌｅｃｔｉｏｎｉｎＥｕｒｏｐｅａｎｍａｉｚｅｅｌｉｔｅｂｒｅｅｄｉｎｇｐｏｐｕｌａｔｉｏｎｓ

［Ｊ］．犜犺犲狅狉犲狋犻犮犪犾犪狀犱 犃狆狆犾犾犻犲犱 犌犲狀犲狋犻犮狊，２０１２ａ，１２４：

７６９７７６．

［２４］　ＨＥＳＬＯＴＮ，ＹＡＮＧＨＰ，ＳＯＲＲＥＬＬＳＭＥ，犲狋犪犾．Ｇｅｎｏｍｉｃ

ｓｅｌｅｃｔｉｏｎｉｎｐｌａｎｔｂｒｅｅｄｉｎｇ：ａｃｏｍｐａｒｉｓｏｎｏｆｍｏｄｅｌｓ［Ｊ］．犆狉狅狆

犛犮犻犲狀犮犲，２０１２，５２：１４６１６０．

［２５］　ＣＨＥＮＸ，ＳＵＬＬＩＶＡＮＰＦ．Ｓｉｎｇｌｅｎｕｃｌｅｏｔｉｄｅｐｏｌｙｍｏｒｐｈｉｓｍ

ｇｅｎｏｔｙｐｉｎｇ：ｂｉｏｃｈｅｍｉｓｔｒｙ，ｐｒｏｔｏｃｏｌ，ｃｏｓｔａｎｄｔｈｒｏｕｇｈｐｕｔ

［Ｊ］．犘犺犪狉犿犪犮狅犌犲狀犲狋犻犮狊，２００３，３：７７９６．

［２６］　ＰＯＬＡＮＤＪ，ＲＩＦＥＴＷ．Ｇｅｎｏｔｙｐｉｎｇｂｙｓｅｑｕｅｎｃｉｎｇｆｏｒｐｌａｎｔ

ｂｒｅｅｄｉｎｇａｎｄｇｅｎｅｔｉｃｓ［Ｊ］．犘犾犪狀狋犌犲狀犲狋犻犮狊，２０１２，５：９２１０２．

［２７］　ＨＡＢＩＥＲＤ，ＦＥＲＮＡＮＤＯＲＬ，ＤＥＫＫＥＲＳＪＣＭ．Ｔｈｅｉｍ

ｐａｃｔｏｆｇｅｎｅｔｉｃｒｅｌａｔｉｏｎｓｈｉｐｉｎｆｏｒｍａｔｉｏｎｏｎｇｅｎｏｍｅａｓｓｉｓｔｅｄ

ｂｒｅｅｄｉｎｇｖａｌｕｅｓ［Ｊ］．犌犲狀犲狋犻犮狊，２００７，１７７：２３８９２３９７．

［２８］　ＤＡＥＴＷＹＬＥＲ Ｈ Ｄ，ＶＩＬＬＡＮＵＥＶＡＢ，ＷＯＯＬＬＩＡＭＳＪ

Ａ．Ａｃｃｕｒａｃｙｏｆｐｒｅｄｉｃｔｉｎｇｔｈｅｇｅｎｅｔｉｃｒｉｓｋｏｆｄｉｓｅａｓｅｕｓｉｎｇａ

ｇｅｎｏｍｅｗｉｄｅａｐｐｒｏａｃｈ［Ｊ］．犘犔狅犛犗狀犲，２００８，３：３３９５．

［２９］　ＡＬＢＲＥＣＨＴＴ，ＷＩＭＭＥＲＶ，ＡＵＩＮＧＥＲＨＪ，犲狋犪犾．Ｇｅ

ｎｏｍｅｂａｓｅｄｐｒｅｄｉｃｔｉｏｎｏｆｔｅｓｔｃｒｏｓｓｖａｌｕｅｓｉｎｍａｉｚｅ［Ｊ］．犜犺犲狅

狉犲狋犻犮犪犾犪狀犱犃狆狆犾犾犻犲犱犌犲狀犲狋犻犮狊，２０１１，１２３：３３９３５０

［３０］　ＣＬＡＲＫＳ，ＨＩＣＫＥＹＪ，ＷＥＲＦＪ．Ｄｉｆｆｅｒｅｎｔｍｏｄｅｌｓｏｆｇｅｎｅｔｉｃ

ｖａｒｉａｔｉｏｎａｎｄｔｈｅｉｒｅｆｆｅｃｔｏｎｇｅｎｏｍｉｃｅｖａｌｕａｔｉｏｎ［Ｊ］．犌犲狀犲狋犻犮

犛犲犾犲犮狋犻狅狀犈狏狅犾狌狋犻狅狀，２０１１，４３：１８．

［３１］　ＰＳＺＣＺＯＬＡＭ，ＳＴＲＡＢＥＬＴ，ＭＵＬＤＥＲＨＡ，犲狋犪犾．Ｒｅｌｉａ

ｂｉｌｉｔｙｏｆｄｉｒｅｃｔｇｅｎｏｍｉｃｖａｌｕｅｓｆｏｒａｎｉｍａｌｓｗｉｔｈｄｉｆｆｅｒｅｎｔｒｅｌａ

ｔｉｏｎｓｈｉｐｓｗｉｔｈｉｎａｎｄｔｏｔｈｅｒｅｆｅｒｅｎｃｅｐｏｐｕｌａｔｉｏｎ［Ｊ］．犑狅狌狉狀犪犾

狅犳犇犪犻狉狔犛犮犻犲狀犮犲，２０１２，９５ｚ：３８９４００．

［３２］　ＳＡＡＴＣＨＩＭ，ＭＣＣＬＵＲＥＭＣ，ＭＣＫＡＹＳＤ，犲狋犪犾．Ａｃｃｕ

ｒａｃｉｅｓｏｆｇｅｎｏｍｉｃｂｒｅｅｄｉｎｇｖａｌｕｅｓｉｎＡｍｅｒｉｃａｎＡｎｇｕｓｂｅｅｆ

ｃａｔｔｌｅｕｓｉｎｇｋｍｅａｎｓｃｌｕｓｔｅｒｉｎｇｆｏｒｃｒｏｓｓｖａｌｉｄａｔｉｏｎ［Ｊ］．犌犲

狀犲狋犻犮犛犲犾犲犮狋犻狅狀犈狏狅犾狌狋犻狅狀，２０１１，４３：４０．

［３３］　ＷＩＮＤＨＡＵＳＥＮＶＳ，ＡＴＬＩＮＧＮ，ＣＲＯＳＳＡＪ，犲狋犪犾．Ｅｆ

ｆｅｃｔｉｖｅｎｅｓｓｏｆｇｅｎｏｍｉｃｐｒｅｄｉｃｔｉｏｎｏｆｍａｉｚｅｈｙｂｒｉｄｐｅｒｆｏｒｍａｎｃｅ

ｉｎｄｉｆｆｅｒｅｎｔｂｒｅｅｄｉｎｇｐｏｐｕｌａｔｉｏｎｓａｎｄｅｎｖｉｒｏｎｍｅｎｔｓ［Ｊ］．犌犲狀犲狊

犌犲狀狅犿犲狊犌犲狀犲狋犻犮，２０１２，２：１４２７１４３６．

［３４］　ＧＵＯＺ，ＴＵＣＫＥＲＤＭ，ＢＡＳＴＥＮＣＪ，犲狋犪犾．Ｔｈｅｉｍｐａｃｔｏｆ

ｐｏｐｕｌａｔｉｏｎｓｔｒｕｃｔｕｒｅｏｎｇｅｎｏｍｉｃｐｒｅｄｉｃｔｉｏｎｉｎｓｔｒａｔｉｆｉｅｄｐｏｐｕ

ｌａｔｉｏｎｓ［Ｊ］．犜犺犲狅狉犲狋犻犮犪犾犪狀犱犃狆狆犾犾犻犲犱犌犲狀犲狋犻犮狊，２０１４，１２７：

７４９７６２

［３５］　ＨＡＢＩＥＲＤ，ＦＥＲＮＡＮＤＯＲＬ，ＤＥＫＫＥＲＳＪＣＭ．Ｇｅｎｏｍｉｃ

ｓｅｌｅｃｔｉｏｎｕｓｉｎｇｌｏｗｄｅｎｓｉｔｙ ｍａｒｋｅｒｐａｎｅｌｓ［Ｊ］．犌犲狀犲狋犻犮狊，

２００９，１８２：３４３３５３．

［３６］　ＶＡＮＥＳＳＡＳＷ，ＡＴＬＩＮＧＮ，ＨＩＣＫＥＹＪＭ，犲狋犪犾．Ｅｆｆｅｃ

ｔｉｖｅｎｅｓｓｏｆｇｅｎｏｍｉｃｐｒｅｄｉｃｔｉｏｎｏｆｍａｉｚｅｈｙｂｒｉｄｐｅｒｆｏｒｍａｎｃｅｉｎ

ｄｉｆｆｅｒｅｎｔｂｒｅｅｄｉｎｇｐｏｐｕｌａｔｉｏｎｓａｎｄｅｎｖｉｒｏｎｍｅｎｔｓ［Ｊ］．犌犲狀狅犿犻犮

犛犲犾犲犮狋犻狅狀，２０１２，２（１４）：１４２７１４３６．

［３７］　ＷＥＧＥＮＡＳＴＴ，ＬＯＮＧＩＮＣＦＨ，ＵＴＺＨＦ，犲狋犪犾．Ｈｙｂｒｉｄ

ｍａｉｚｅｂｒｅｅｄｉｎｇｗｉｔｈｄｏｕｂｌｅｄｈａｐｌｏｉｄｓＩＶ．Ｎｕｍｂｅｒｖｅｒｓｕｓｓｉｚｅ

ｏｆｃｒｏｓｓｅｓａｎｄｉｍｐｏｒｔａｎｃｅｏｆｐａｒｅｎｔａｌｓｅｌｅｃｔｉｏｎｉｎｔｗｏｓｔａｇｅ

ｓｅｌｅｃｔｉｏｎｆｏｒｔｅｓｔｃｒｏｓｓｐｅｒｆｏｒｍａｎｃｅ［Ｊ］．犜犺犲狅狉犲狋犻犮犪犾犪狀犱犃狆

狆犾犾犻犲犱犌犲狀犲狋犻犮狊，２００８，１１７：２５１２６０．

［３８］　ＳＯＬＢＥＲＧＴＲ，ＳＯＮＥＳＳＯＮＡＫ，ＷＯＯＬＬＩＡＭＳＪＡ，犲狋

犪犾．Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｕｓｉｎｇｄｉｆｆｅｒｅｎｔｍａｒｋｅｒｔｙｐｅｓａｎｄｄｅｎｓｉ

ｔｉｅｓ［Ｊ］．犑狅狌狉狀犪犾狅犳犃狀犻犿犪犾犅狉犲犲犱犻狀犵犌犲狀犲狋犻犮狊，２００８，８６

（１０）：２４４７２４５４．

［３９］　ＬＯＲＥＮＺＡＮＡＲＥ，ＢＥＲＮＡＲＤＯＲ．Ａｃｃｕｒａｃｙｏｆｇｅｎｏｔｙｐｉｃ

ｖａｌｕｅｐｒｅｄｉｃｔｉｏｎｓｆｏｒ ｍａｒｋｅｒｂａｓｅｄｓｅｌｅｃｔｉｏｎｉｎｂｉｐａｒｅｎｔａｌ

ｐｌａｎｔｐｏｐｕｌａｔｉｏｎｓ［Ｊ］．犜犺犲狅狉犲狋犻犮犪犾犪狀犱 犃狆狆犾犻犲犱 犌犲狀犲狋犻犮狊，

２００９，１２０：１５１１６１．

［４０］　ＷＯＬＤＨ，ＪＯＨＮＳＯＮＮＬ，ＫＯＴＺＳ．Ｐａｒｔｉａｌｌｅａｓｔｓｑｕａｒｅｓ

［Ｃ］．ＥｎｃｙｃｌｏｐｅｄｉａｏｆＳｔａｔｉｓｔｉｃａｌＳｃｉｅｎｃｅ．ＮｅｗＹｏｒｋ：Ｗｉｌｅｙ，

１９８５：５８１９１．

［４１］　ＳＯＬＢＥＲＧＴＲ，ＳＯＮＥＳＳＯＮＡＫ，ＷＯＯＬＬＩＡＭＳＪＡ，犲狋

犪犾．Ｒｅｄｕｃｉｎｇｄｉｍｅｎｓｉｏｎａｌｉｔｙｆｏｒｐｒｅｄｉｃｔｉｏｎｏｆｇｅｎｏｍｅｗｉｄｅ

ｂｒｅｅｄｉｎｇｖａｌｕｅｓ［Ｊ］．犌犲狀犲狋犻犮犛犲犾犲犮狋犻狅狀犈狏狅犾狌狋犻狅狀，２００９，４１

（１）：２９．

［４２］　ＣＲＯＳＳＡＪ，ＣＡＭＰＯＳＧ，Ｐ?ＲＥＺＰ，犲狋犪犾．Ｐｒｅｄｉｃｔｉｏｎｏｆｇｅ

ｎｅｔｉｃｖａｌｕｅｓｏｆｑｕａｎｔｉｔａｔｉｖｅｔｒａｉｔｓｉｎｐｌａｎｔｂｒｅｅｄｉｎｇｕｓｉｎｇｐｅｄｉ

ｇｒｅｅａｎｄｍｏｌｅｃｕｌａｒｍａｒｋｅｒｓ［Ｊ］．犌犲狀犲狋犻犮狊，２０１０，１８６（２）：

７１３７２４．

［４３］　ＭＥＵＷＩＳＳＥＮＴＨＥ，ＳＯＬＢＥＲＧＴＲ，ＳＨＥＰＨＥＲＤＲ，犲狋

犪犾．ＡｆａｓｔａｌｇｏｒｉｔｈｍｆｏｒＢａｙｅｓＢｔｙｐｅｏｆｐｒｅｄｉｃｔｉｏｎｏｆｇｅｎｏｍｅ

ｗｉｄｅｅｓｔｉｍａｔｅｓｏｆｇｅｎｅｔｉｃｖａｌｕｅ［Ｊ］．犌犲狀犲狋犻犮犛犲犾犲犮狋犻狅狀犈狏狅犾狌

狋犻狅狀，２００９，４１：２．

［４４］　ＷＡＮＧ Ｗ ＹＳ，ＢＡＲＲＡＴＴＢＪ，ＣＬＡＹＴＯＮＤＧ，犲狋犪犾．

Ｇｅｎｏｍｅｗｉｄｅａｓｓｏｃｉａｔｉｏｎｓｔｕｄｉｅｓ：ｔｈｅｏｒｅｔｉｃａｌａｎｄｐｒａｃｔｉｃａｌ

ｃｏｎｃｅｒｎｓ［Ｊ］．犖犪狋狌狉犲犚犲狏犻犲狑犌犲狀犲狋犻犮狊，２００５，６（２）：１０９１１８．

［４５］　ÈÉÊ

，
ËÌÍ

，
A��．,cdef§¨¸�

［Ｊ］．PQ

，

２０１１，３３（１２）：１３０８１３１６．

ＬＩＨＤ，ＢＡＯＺＭ，ＳＵＮＸＷ．Ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎａｎｄｉｔｓａｐ

ｐｌｉｃａｔｉｏｎ［Ｊ］．犎犲狉犲犱犻狋犪狊，２０１１，３３（１２）：１３０８１３１６．

［４６］　ＳＡＳＩｎｓｔｉｔｕｔｅ．ＴｈｅＳＡＳｓｙｓｔｅｍｆｏｒＷｉｎｄｏｗｓ．Ｒｅｌｅａｓｅ９．２．

６７２１ !　"　#　$　%　&　　　　　　　　　　　　　　　　　　　３６½



ＳＡＳＩｎｓｔ．，Ｃａｒｙ，ＮＣ，２００９．

［４７］　ＬＵＮＤＭＳ，ＳＡＨＡＮＡＧ，ＫＯＮＩＮＧＤＪ，犲狋犪犾．Ｃｏｍｐａｒｉｓｏｎ

ｏｆａｎａｌｙｓｅｓｏｆｔｈｅＱＴＬＭＡＳＸＩＩｃｏｍｍｏｎｄａｔａｓｅｔ．Ｉ：Ｇｅｎｏｍｉｃ

ｓｅｌｅｃｔｉｏｎ［Ｊ］．犅犕犆犘狉狅犮犲犲犱犻狀犵狊，２００９，３（Ｓｕｐｐｌ．１）：Ｓ１．

［４８］　ＢＡＳＴＩＡＡＮＳＥＮＪＷ，ＣＯＳＴＥＲ Ａ，ＣＡＬＵＳＭ Ｐ，犲狋犪犾．

Ｌｏｎｇｔｅｒｍｒｅｓｐｏｎｓｅｔｏｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ：ｅｆｆｅｃｔｓｏｆｅｓｔｉｍａ

ｔｉｏｎｍｅｔｈｏｄａｎｄｒｅｆｅｒｅｎｃｅｐｏｐｕｌａｔｉｏｎｓｔｒｕｃｔｕｒｅｆｏｒｄｉｆｆｅｒｅｎｔ

ｇｅｎｅｔｉｃａｒｃｈｉｔｅｃｔｕｒｅｓ［Ｊ］．犌犲狀犲狋犻犮狊犛犲犾犲犮狋犻狅狀犈狏狅犾狌狋犻狅狀，２０１２，

４：３１６．

［４９］　ＯＧＵＴＵＪＯ，ＰＩＥＰＨＯＨＰ，ＴＯＲＢＥＮＳＳ．Ａｃｏｍｐａｒｉｓｏｎ

ｏｆｒａｎｄｏｍｆｏｒｅｓｔｓ，ｂｏｏｓｔｉｎｇａｎｄｓｕｐｐｏｒｔｖｅｃｔｏｒｍａｃｈｉｎｅｓｆｏｒ

ｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ［Ｊ］．犅犕犆犘狉狅犮犲犲犱犻狀犵狊，２０１１，５（Ｓｕｐｐｌ３）：

Ｓ１１．

［５０］　ＤＡＥＴＷＹＬＥＲＨＤ，ＷＯＮＧＲＰ，ＶＩＬＬＡＮＵＥＶＡＢ，犲狋犪犾．

Ｔｈｅｉｍｐａｃｔｏｆｇｅｎｅｔｉｃａｒｃｈｉｔｅｃｔｕｒｅｏｎｇｅｎｏｍｅｗｉｄｅｅｖａｌｕａｔｉｏｎ

ｍｅｔｈｏｄｓ［Ｊ］．犌犲狀犲狋犻犮狊，２０１０，１８５：１０２１１０３１．

［５１］　ＪＵＬＩＯＩ，ＪＡＮＮＩＮＫＪＬ，ＡＫＤＥＭＩＲＤ，犲狋犪犾．Ｔｒａｉｎｉｎｇｓｅｔ

ｏｐｔｉｍｉｚａｔｉｏｎｕｎｄｅｒｐｏｐｕｌａｔｉｏｎｓｔｒｕｃｔｕｒｅｉｎｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ

［Ｊ］．犜犺犲狅狉犲狋犻犮犪犾犪狀犱 犃狆狆犾犾犻犲犱 犌犲狀犲狋犻犮狊，２０１４，１２８（１）：

１４５１５８．

［５２］　ＮＡＶＡＢＩＡ，ＭＡＴＨＥＲＤＥ，ＢＥＲＮＩＥＲＪ，犲狋犪犾．ＱＴＬｄｅ

ｔｅｃｔｉｏｎｗｉｔｈｂｉｄｉｒｅｃｔｉｏｎａｌａｎｄｕｎｉｄｉｒｅｃｔｉｏｎａｌｓｅｌｅｃｔｉｖｅｇｅｎｏｔｙ

ｐｉｎｇ：ｍａｒｋｅｒｂａｓｅｄａｎｄｔｒａｉｔｂａｓｅｄａｎａｌｙｓｅｓ［Ｊ］．犜犺犲狅狉犲狋犻犮犪犾

犪狀犱犃狆狆犾犾犻犲犱犌犲狀犲狋犻犮狊，２００９，１１８：３４７３５８．

［５３］　ＺＨＡＯＹＳ，ＧＯＷＤＡ Ｍ，ＬＯＮＧＩＮＦＨ，犲狋犪犾．Ｉｍｐａｃｔｏｆ

ｓｅｌｅｃｔｉｖｅｇｅｎｏｔｙｐｉｎｇｉｎｔｈｅｔｒａｉｎｉｎｇｐｏｐｕｌａｔｉｏｎｏｎａｃｃｕｒａｃｙ

ａｎｄｂｉａｓｏｆｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎ［Ｊ］．犜犺犲狅狉犲狋犻犮犪犾犪狀犱犃狆狆犾犾犻犲犱

犌犲狀犲狋犻犮狊，２０１２ｂ，１２５：７０７７１３．

［５４］　ÎÏÐ

，
Ñ}Ò．¸�{ÓPQ%

［Ｍ］．"Ô

：
h'34+%

67�ÕÖ

，２００７：１８５２０４．

ＺＨＡＩＨ Ｑ，ＷＡＮＧＪＫ．Ａｐｐｌｉｅｄ ＱｕａｎｔｉｔａｔｉｖｅＧｅｎｅｔｉｃｓ

［Ｍ］．Ｂｅｉｊｉｎｇ：ＣｈｉｎａＡｇｒｉｃｕｌｔｕｒａｌＳｃｉｅｎｃｅａｎｄＴｅｃｈｎｏｌｏｇｙ

ＰｕｂｌｉｓｈｉｎｇＨｏｕｓｅ，２００７：１８５２０４．

［５５］　ＢＥＲＮＡＲＤＯＲ．Ｐｒｅｄｉｃｔｉｏｎｏｆｍａｉｚｅｓｉｎｇｌｅｃｒｏｓｓｐｅｒｆｏｒｍａｎｃｅ

ｕｓｉｎｇＲＦＬＰｓａｎｄｉｎｆｏｒｍａｔｉｏｎｆｒｏｍｒｅｌａｔｅｄｈｙｂｒｉｄｓ［Ｊ］．犆狉狅狆

犛犮犻犲狀犮犲，１９９４，３４：２０２５．

［５６］　ＢＥＲＮＡＲＤＯＲ．Ｇｅｎｅｔｉｃｍｏｄｅｌｓｆｏｒｐｒｅｄｉｃｔｉｎｇｍａｉｚｅｓｉｎｇｌｅ

ｃｒｏｓｓｐｅｒｆｏｒｍａｎｃｅｉｎｕｎｂａｌａｎｃｅｄｙｉｅｌｄｔｒｉａｌｄａｔａ［Ｊ］．犆狉狅狆

犛犮犻犲狀犮犲，１９９５，３５：１４１１４７．

［５７］　ＢＥＲＮＡＲＤＯＲ．Ｂｅｓｔｌｉｎｅａｒｕｎｂｉａｓｅｄｐｒｅｄｉｃｔｉｏｎｏｆｍａｉｚｅｓｉｎ

ｇｌｅｃｒｏｓｓｐｅｒｆｏｒｍａｎｃｅ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，１９９６，３６：５０５６．

［５８］　ＢＥＲＮＡＲＤＯＲ．Ｍａｒｋｅｒａｓｓｉｓｔｅｄｂｅｓｔｌｉｎｅａｒｕｎｂｉａｓｅｄｐｒｅｄｉｃ

ｔｉｏｎｏｆｓｉｎｇｌｅｃｒｏｓｓｐｅｒｆｏｒｍａｎｃｅ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，１９９９，３９：

１２７７１２８２．

［５９］　ＭＡＳＳＭＡＮＪＭ，ＧＯＲＤＩＬＬＯ Ａ，ＬＯＲＥＮＺＡＮＡＲＥ，犲狋

犪犾．Ｇｅｎｏｍｅｗｉｄｅｐｒｅｄｉｃｔｉｏｎｓｆｒｏｍｍａｉｚｅｓｉｎｇｌｅｃｒｏｓｓｄａｔａ［Ｊ］．

犜犺犲狅狉犲狋犻犮犪犾犪狀犱犃狆狆犾犾犻犲犱犌犲狀犲狋犻犮狊，２０１３，１２６：１３２２．

［６０］　ＰＩＥＰＨＯＨＰ．Ｒｉｄｇｅｒｅｇｒｅｓｓｉｏｎａｎｄｅｘｔｅｎｓｉｏｎｓｆｏｒｇｅｎｏｍｅ

ｗｉｄｅｓｅｌｅｃｔｉｏｎｉｎｍａｉｚｅ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，２００９，４９：１１６５

１１７６．

［６１］　ＲＯＢＥＲＴＯＦＮ，ＪＵＬＩＯＣＤ，?ＤＥＲＣＭＬ，犲狋犪犾．Ｇｅｎｏｍｅ

ｗｉｄｅｓｅｌｅｃｔｉｏｎｉｎｆｏｒｔｒｏｐｉｃａｌｍａｉｚｅｒｏｏｔｔｒａｉｔｓｕｎｄｅｒｃｏｎｄｉｔｉｏｎｓ

ｏｆｎｉｔｒｏｇｅｎａｎｄｐｈｏｓｐｈｏｒｕｓｓｔｒｅｓｓ［Ｊ］．犃犮狋犪犛犮犻犲狀狋犻犪狉狌犿，

２０１２，３４（４）：３８９３９５．

［６２］　ＥＭＩＬＹＣ，ＢＥＲＮＡＲＤＯＲ．Ｇｅｎｏｍｅｗｉｄｅｓｅｌｅｃｔｉｏｎｔｏｉｎｔｒｏ

ｇｒｅｓｓｓｅｍｉｄｗａｒｆｍａｉｚｅｇｅｒｍｐｌａｓｍｉｎｔｏＵ．Ｓ．ＣｏｒｎＢｅｌｔｉｎ

ｂｒｅｄｓ［Ｊ］．犆狉狅狆犛犮犻犲狀犮犲，２０１３ｂ，５３：１４２７１４３６．

［６３］　ＢＥＮＪＡＭＩＮＭ，ＣＯＭＢＥＪＬ，ＴＡＮＫＳＬＥＹＳＤ．Ｓｅｌｆｉｎｇｆｏｒ

ｔｈｅｄｅｓｉｇｎｏｆｇｅｎｏｍｉｃｓｅｌｅｃｔｉｏｎｅｘｐｅｒｉｍｅｎｔｓｉｎｂｉｐａｒｅｎｔａｌ

ｐｌａｎｔｐｏｐｕｌａｔｉｏｎｓ［Ｊ］．犜犺犲狅狉犲狋犻犮犪犾犪狀犱 犃狆狆犾犾犻犲犱 犌犲狀犲狋犻犮狊，

２０１３，１２６：２９０７２９２０．

［６４］　ＢＯＲＤＥＳＪ，ＣＨＡＲＭＥＴＧ，ＶＡＵＬＸＲＤ，犲狋犪犾．Ｄｏｕｂｌｅｄ

ｈａｐｌｏｉｄｖｅｒｓｕｓｓｉｎｇｌｅｓｅｅｄｄｅｓｃｅｎｔａｎｄＳ１ｆａｍｉｌｙｖａｒｉａｔｉｏｎｆｏｒ

ｔｅｓｔｃｒｏｓｓｐｅｒｆｏｒｍａｎｃｅｉｎａｍａｉｚｅｐｏｐｕｌａｔｉｏｎ［Ｊ］．犈狌狆犺狔狋犻犮犪，

２００７，１５４：４１５１．

［６５］　ＨＵ，ＲＦ，ＭＥＮＧＥＣ，ＺＨＡＮＧＳＨ，犲狋犪犾．Ｐｒｉｏｒｉｔｉｚａｔｉｏｎ

ｆｏｒｍａｉｚｅｒｅｓｅａｒｃｈａｎｄｄｅｖｅｌｏｐｍｅｎｔｉｎＣｈｉｎａ［Ｊ］．犛犮犻犲狀狋犻犪

犃犵狉犻犮狌犾狋狌狉犪犛犻狀犻犮犪，２００４，３７：７８１７８７．

（
!"

：
#$%

）　　

７７２１６¾　　　　　　　　A　B

，
®

：
#$b,cdef67kGH�°§¨¶NOR<·k¸�

（
¿�

）


