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Abstract: Marker-assisted selection (MAS) technology could realize direct genetic selection, but it must
base on QTL mapping. Genomic selection (GS), as the newest MAS method, has much advantage com-
pared to traditional MAS technology.,especially QTL mapping not necessary. In this paper, the factors af-
fecting prediction accuracy of GS were reviewed, including training population type, prediction model,
marker number, population size, population structure, hereditary of traits and so on. The application of
GS in maize breeding was also introduced as well as hybrids performance prediction. We then predicated
the future research and application of GS in maize breeding.
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With rapid development of the molecular biol- nology is as a kind of crop genetic improvement
ogy and genomics, marker-assisted selection method combing the phenotypic and genetic value,
(MAS) emerged as the times require. MAS tech- which can realize genetic direct selection and effec-
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tive polymerization')., When complex traits con-
trolled by multiple genes need to be improved,
MAS has two aspects of flaws. First, selection of
the progeny population is established on the quan-
tity traits location (QTL) mapping. But the result
of QTL mapping basing on the bi-parental popula-
tions has no universality and couldn’t be applied
accurately in breeding®. Second, the important
traits were controlled by lots of small effective
genes, lack of appropriate statistic method and
breeding technology which will apply quantity
New MAS

technology-genomic selection (GS) emerged as the

genes to complex traits improvement™!,

times require.

1 Origination and advantage of ge-
nomic selection (GS)

Meuwissen first put forward genomic selection
(GS) breeding strategy. GS uses a “training popu-
lation” of individuals that have been genotyped and
phenotyped. Best linear wunbiased prediction
(BLUP) model is established on the basis of the
genotyped result of an individual and its breeding
value (Mean performance of crosses with same
tester) for the training population. The breeding
value of “Candidate population” is estimated by
BLUP model and genotypic data. without cross to
BLUP model

takes genotypic data of untested individuals and

tester and phenotypes record™.

produces genomic estimated breeding values (GEB-
Vs). These GEBVs say nothing of the function of
the underlying genes as the ideal selection criteri-

15, Genomic selection basis of GEBVs is superi-

on
or to traditional breeding for increasing gains per
unit time even if both models show the same effi-
ciency. In principle, phenotypes value of the can-
didate individuals is non-essential for the selection,
hence shortening the length of the breeding cy-
clet™,

Genomic selection have several merits com-
pared to the traditional MAS. (1) QTL mapping is
not necessary for GS. Genomic selection differs
from previous strategies such as linkage and associ-

ation mapping in that it abandons the objective to

map the effect of single gene and instead of focu-
sing on the efficient estimation of breeding values
on the basis of a large number of molecular mark-
ers, ideally covering the full genome . (2) Ge-
nomic selection is more precision especially for ear-
ly selection. Genotyping uses high density molecu-
lar markers which can estimate all of the QTL
effects and explain the genetic variance for most of
the traits. But MAS only uses several markers in
traits selection. So genomic selection is more accu-
rate than MAS.

shorten generation interval, accelerate genetic pro-

(3) Genomic selection can

gress and reduce production cost. Genetic progress
of GS is more than phenotypic selection 4% —
25%. Cost of GS is less than traditional breeding
26% —56 %" . (4) Selection efficiency of low heri-
tability traits is higher for GS than MAS. (5) The
criterion of GS is breeding value, sum of all of the
allele genetic effects for each individual. It is
judged by the mean performance of its cross proge-
ny, not the performance of itself. So GS is more
accurate™™,

Genomic selection originated from animal
breeding during last century. It has been widely
used in dairy cattle breeding in America, Austral-

[10-11]

ia, New Zealand and so on It was also ap-

plied in broiler chickens and pigs breeding™?'.
GS’ application in plant breeding was developed in
recent years, which focused on simulation studies.
It is used in maize', wheat!'™, treel'™, sugar
beet!'™, Barley"®, triticale™® and so on.

Empirical study is performed in larger compa-
nies such as Monsanto and Pioneer-Dupond. Mark
Sorrells and Jean-Luc Jannink are trying to use GS
to increase the speed of variety improvement 3—4
times. The work is carried out with CYMMIT and
performed four aspects to improve the yield of
maize and wheat!",

Under the above context, the objective of this
study is to review the essential factors affecting the
GS in plant breeding. Maize is essential for global
food security. More research of genomic selection
[21-23]

on maize lauched in recent years The paper

will introduce the advance on the application of GS
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in maize breeding. We than put forward the future
research which should be carried out in maize

breeding in China.

2 Affecting factors of genomic selec-
tion

Factors that affect GS prediction accuracy of
include the number of markers used for estimating
the GEBVsM, trait heritability'™,

population sizel, statistical modelst*”, number

calibration

25-26]

and type of molecular markers , linkage dise-

] 28]
’

quilibrium**”, effective population size rela-

tionship between calibration and test set (TS)*3!
and population structure**,
2.1 Training population of genomic selection

In animal breeding, we only discussed GS in
the context of population-wide linkage disequilibri-
um, where the population might be defined as an
entire breed of cattle, pig, or chicken. The need
for high marker densities in GS may be reduced if
the candidate population consists of progeny of the
training population. In that case, an evenly spaced
low-density subset of the markers typed on the
training population can be used on the candidates,
and scores for the full complement of markers can
be inferred by cosegregation'®’. Because plants of-
ten produce very large full sibships (an F, popula-
tion derived from a single F, by selfing is an exam-
ple of such a sibship), however, there is also a
tradition of QTL detection, MAS and GS within
such sibships™. Bernardo compared F,, BC;, and
BC, populations from an adapted X exotic maize

cross as training population in the simulation ex-
14]

periment'". The result indicates that genomewide
selection should start at F, rather than backcross
population, even when the number of favorable al-
leles is substantially larger in the adapted parent
than in the exotic parent. Compared to natural
populations, genetic basis of F, populations is sim-
pler because F, populations derive from only two
inbred lines. So the biparental population size
might be smaller than that of natural populations.
Simulation studies have previously indicated that

for three cycles of genomewide selection in an a-

dapted X exotic cross, a population size of NC, =
144 was generally sufficient™®. Low density mark-
ers are suitable to F, populationst®’. But two dis-
advantages of F, populations exist. Biparental pop-
ulation requires separate model for training within
each cross. The BLUP model is only suit for the
progenies selection from the two parental lines.
The progeny of F, population must be selected by
the phenotypic value of F; testcrosses. Following
progeny selection may be only according to BLUP
model after F;.

F, as training population often be suilt for
cross-pollinated plant such as maize. Yusheng
Zhao based on experimental data of six segregating
populations from a half-diallel mating design with
788 testcross progenies from an elite maize breed-

231 In the study of Vannesa et al. ",

ing program
marker effects estimated in 255 diverse maize hy-
brids were used to predict grain yield, anthesis
date, and anthesis-silking interval within the diver-
sity panel and testcross progenies of 30 F,-derived
lines from each of five populations.

Wegenast et al. suggested that genomic selec-
tion was applied in plant breeding, however, not
only within a specific bi-parental cross or within a
diverse panel of elite lines but also rather within
and among crosses”’). Sell-pollination plant often
adopt natural population such as wheat or sugar.
Wiirschum et al used 924 sugar beet lines as train-
ing population. The results suggest that a training
population derived from intensively phenotyped
and genotyped diverse lines from a breeding pro-
gram does hold potential to build up robust calibra-

]

tion models for genomic selection™™. Hans et al.

accessed the accuracy of GEBVs for rust resistance
in 206 hexaploid wheat landraces*.
2.2 Prediction model of genomic selection
Genomic selection modeling takes advantage of
the increasing abundance of molecular markers
through modeling of many genetic loci with small
effectst?**] " Over the last decade, simulation
and empirical cross-validation studies in plants

have shown GS is more effective than traditional

MAS strategies that use only a subset of markers
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with significant effects™ %",

Estimation methods of allelic effects include
least squares regression ", ridge regression BLUP

(RR-BLUP), principle component analysis-*"**

and Bayes regression®®. In essence for least
squares, chromosome fragments or markers are se-
lected associated to the traits by genome-wide as-
sociation studies (GWAS) at the same time and
then the effect of the fragments is estimated™*.
RR-BLUP method regards the fragment effects as
random effects. The marker effect was estimated
by linear mixed models. The sum of fragments
effect is breeding value for an individual™*. Bayes
methods combines the prior distribution of marker
effect variance and data collection. Frenquently
used Bayes methods conclude Bayes A and Bayes
B. Main difference between Bayes A and Bayes B is
that Bayes A permits different variance for differ-
ent markers and Bayes B permits that the variance
of some markers is zero"**.

Simulation studies show that the prediction
accuracy of Bayes method is best and least squares
is weakest. The accuracy rate of RR-BLUP is
slightly smaller than Bayes A. Even so, RR-BLUP
has four aspects superior to Bayesian method.
First, Bayesian method is complex and need super
computer. But computer requirement is lower and
calculation speed is higher for RR-BLUP. Marker
effects are estimated by RR-BLUP in SAS PROC
IMLM,
more accurate in BLUP than Bayes B. Regression
coefficient b of RR-BLLUP is nearer to 1 than Bayes
AN Habier et al. showed that RR-BLUP is more

effective at capturing genetic relationships because
1:27]

Second, prediction within families was

it fits more markers into the prediction Mode
In contrast, Bayes B is more effective at capturing
LD between markers and QTL. Third, RR-BLUP
is more accurate than other method when the num-
ber of QTLs increases or the heredity is higher™®’.
Fourth, BLUP led to lower inbreeding and a smal-
ler reduction of genetic variance compared to Bayes
and PLSM,

BLUP methods is better than Bayesian regression

From above, we can conclud that

for plant models.

In addition, machine-learning methods also
can be used to predict the marker effect, including
support vector machine (SVM) , booting and ran-
dom forest (RF). Ogutu et al. compared these
methods for genomic selection. The result shows
that the correlation between the predicted and true
breeding values is 0. 547 for boosting, 0. 497 for
SVMs, and 0. 483 for RF, indicating better per-
formance for boosting than for SVMs and RF--,
2.3 Other factors affecting prediction accuracy

In genome-wide selection methods, prediction
accuracy is affected by population size (N), aver-
age hereditary of traits (h*) and marker numbers
(NP,
ulation structure is also crucial for the prediction

accuracy in genomic selection®™ .

Simulation studies showed that the pop-

Prediction accuracy increases with markers
density. Markers number on a certain length ge-
nome also directly affects total information of ge-
netic markers. If SSR markers density increases
from 0. 25 Ne/morgan (Ne, effective population
size) to 2 Ne/morgan, prediction accuracy will be
improved from 0. 63 to 0. 83. If SNP markers den-
sity increases from 1 Ne/morgan to 8 Ne/morgan,
prediction accuracy will be improved from 0. 69 to
0. 86. Even at the highest tested densities of 2 Ne
SSR markers per Morgan or 8 Ne SNP markers per
Morgan, accuracy had not reached a plateau™.
Meanwhile, more markers number, more easy to
get the Linkage disequilibrium (LD) markers.
Emily found that in the biparental populations,
there was no consistent gain in genome-wide pre-
diction (rmp) from increasing marker density a-
bove one marker per 12. 5 ¢cM). Zhao et al. re-
vealed that the accuracy was nearly reaching a plat-
eau at 800 SNPs when the number of markers var-

ied from 100 to 800,

is sufficiently saturated with markers when the

The reason is that genome
prediction accuracy arrives at a plateau™®*. The
number of markers needed for accurate predictions
of genotypic values depends on the extent of link-
age disequilibrium (LD) between markers and
QTL™ and also on the germplasm under considera-

tion™'®,
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Different marker type has different polymor-
phism information content (PIC). Comparing SSR
and SNP markers, they found that for similar ac-
curacies, the SNP markers required a density of 2
to 3 times that of the SSR™.,

Simulation studies showed that the population
size is crucial for the prediction accuracy in genom-

7], The result of Emily ez al. indicated

ic selection’
that prediction accuracy rmp increased as popula-
tion size N increased. In the biparental maize pop-
ulation and with the highest markers number Ny,
(1 213 markers) and hereditary 2* = 0. 30, the
prediction accuracy for grain yield was rmp = 0. 19
with N= 48, rmp = 0. 26 with N = 96, and rmp
= 0.33 with N = 192'%'_ Zhao Yusheng observed
a monotonic increase in the prediction accuracy for
grain yield with increasing population size without
any substantial decrease in the slope!®). The study
of Bernardo also indicated that lager poluation size
would get higher prediction precision™’. But F,
population size of NC, = 144 was generally suffi-
cientt?!,

Training population structure is also an im-
portant factor affecting prediction accuracy of ge-
nomic selection for multi-parental populations.
Training population structure set methods conclude
random sampling, unidirectional sampling (selec-
ting individuals with highest genotypic values) , bi-
directional sampling (selecting individuals with
This bi-

directional selection showed to be much more pow-

highest or lowest genotypic values)",

erful than random sampling™. Yusheng Zhao ob-
served a substantial loss in the accuracy to predict
genomic breeding values in unidirectional selected
populations. Bidirectional selection is a valuable
approach to efficiently implement genomic selection
in applied plant breeding programs™/,

For the same trait within the same population,
prediction accuracy (rmp) will remain unchanged
for different combinations of population size (N)
and trait hereditary (h*). Decrease on h® can be
compensated by a proportional increase in N (and
vice versa) so that rmp is maintained. On the oth-

er hand, traits with initially low h* can be evalua-

ted with larger N or the h* for a subset of traits
can be increased by the use of additional testing re-
sources. Different traits, however, vary in their
prediction accuracy even when N, A*, and Ny
(markers number) are constant. Yield traits had
lower prediction accuracy than other traits despite
the constant N, h*, and Ny. Simulation results
indicated that rmp is also lowest for yield traits e-
ven when its A* is as high as other traits. Plant
height and lodging are always predicted most accu-

221 Empirical ev-

rately followed by flowering time
idence and experience on the predictability of dif-
ferent traits are necessary in designing training

populations.

3 Genomic selection in maize breed-
ing
3.1 Origination of GS in maize

The key technology of GS is the maize hybrid
prediction by BLUP model with markers effects or
coefficient of parentage. It was used to predict the
single-cross performance in maize hybrid breeding
at first. The BLUP model is established based on
the tested hybrids data and the markers informa-

tion of their parents. The performance of untested
hybrids is predicted by the BLUP model and the
markers data of the parents™'.

Bernardo devoted himself to hybrids prediction
by BLUP model in maize®™ ", The coefficient of
relative between theory and actual observation was
0. 688~0. 800 by RFLP markers®™’. BLUP is suit-
able for hybrid performance prediction since the
trait only has moderate heritability. Prediction ac-
curacy of molecular marker effects is higher than
phylogenetic relationship™®!., With the develop-
ment of molecular markers, new molecular marker
type emerged. Simple sequence repeats (SSR) and
single nucleotide polymorphism (SNP) were wide-
ly used. Manje Gowda et al. found that prediction
accuracy of flower time and plant height was above

091 Research of

0. 8 with SSR markers in maize
Massman et al. indicated that prediction accuracy
of grain yield was 0. 8, and root logging ratio was

0. 87 using SSRmarkers™’. But the prediction
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effect of grain yield was only 0. 50~0. 66, and root
logging ratio was only 0. 31~0. 45 with coefficient

of parentage™’.

Then it indicated that molecular
markers was more suitable for hybrid performance
prediction than coefficient of parentage.

Then scientists found that BLUP was not only
used to hybrid performance prediction, but also the
breeding value of individuals among the maize pop-
ulation. So BLUP was used to individuals selection
of F, population in selection and breeding of inbred
lines. Hybrid performance prediction lay the foun-
dation for the genome-wide selection in maize.

3.2 Application of genomic selection in maize

Bernardo’s laboratory began to study applying
GS to maize breeding in Minnesota University of

2L They did plenty of simulation and em-

America
pirical experiments. Piepho in German and Robert
in Brazil also tried to study using GS in maize
breeding™® . GS utility in maize breeding consist
of two sides, hybrids performance prediction and
improvement of inbred lines. He devoted to inbred
lines improvement using GS. The BLUP model of
biparental populations from two inbred lines is on-
ly suit for the progeny of the parents. Genomewide
selection as proposed in maize involves two

stepst?!,

First, a segregating maize population is
genotyped and evaluated for testcross performance
of F; family. Based on the genotypic and phenotyp-
ic data, breeding values associated with a large set
of markers (e. g. , 256 to 512 markers) are calcu-
lated for the traits of interest. Significance tests
for markers are not used, and the effects of all
markers are fitted as random effects in a linear
model by best linear unbiased prediction (BLUP).
Second, two or three generations of selection based
on all markers are conducted in a year-round nurs-
ery (e.g. . Hawaii or Puerto Rico) or greenhouse.
Trait values are predicted as the sum of an individ-
ual plant’s marker values across all markers, and
selection is subsequently based on these genome-
wide prediction. According to the steps, Emily
(2013b) introgressed semidwarf germplasm to U.
S. Corn belt inbred and found that genomewide se-

lection from Cycle 1 until Cycle 5 either maintained

or improved on the gains from phenotypic selection
achieved in Cycle 1%,

The results of Bernardo indicated that a useful
strategy for the rapid improvement of an adapted X
exotic cross involves 7 to 8 cycles of genomewide
selection starting in the F,"*. Benjamin et al.
demonstrated that progressive selfing had a signifi-
cant and positive impact on genomic selection
gains. In particular, selfing to the Fy produced a
72% increase over F, gains®). However, most of
the gains are realized by the F; generation (95% of
the Fs gains). Also note that the Fy and DH per-
formed similarly, consistent with previous obser-
vations-®H,

In the research of Bernardo, the training pop-
ulation is the specific bi-parental populations from
the two parental lines, so the BLUP model is suit
for the progeny of the two inbred lines. Other ex-
periments of GS in maize are about multi-parental
populations as training population. Study of Yush-
eng Zhao was based on experimental data of six
segregating populations from a half-diallel mating
design. As for maize up to three generations are
feasible per year, selection gain per unit time is
high and, consequently, genomic selection holds
great promise for maize breeding programs'®’.
These result of the study might be as genomic pre-
diction model for further breeding elite maize lines
between the six populations. In the study of Van-
essa et al. , marker effects estimated in 255 diverse
maize hybrids were used to predict grain yield, an-
thesis date, and anthesis-silking interval within the
diversity panel and testcross progenies of 30 F,-de-
rived lines from each of five populations™*. Poten-
tial uses for genomic prediction in maize hybrid
breeding are discussed emphasizing the need of (1)
a clear definition of the breeding scenario in which
genomic prediction should be applied (i. e. , predic-
tion among or within populations), (2) a detailed
analysis of the population structure before per-
forming cross validation, and (3) larger training

sets with strong genetic relationship to the valida-

tion set.
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4 Future research in maize breeding

GS is just beginning to be implemented, but it
will take long time to be used in maize breeding. In
previous study, training population was only from
several inbred lines, even if two inbred lines. It
couldn’t be implemented by other breeding pro-
gram. Future research should focus on two sides of
work. First, we should commit to build a general-
ized prediction model for some kinds of inbred lines
such as yield, quality and so on. But these traits
were complex composed of a great deal of genes.
Traditional MAS technology couldn’t realize the
traits selection in maize breeding. 973 Plan “Basic

study on breeding of genome-wide selection of yield
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