PEAL AL 23R . 2016.36(7) :1331—1336
Acta Bot. Boreal. -Occident. Sin.

XEHS:1000-4025(2016)07-1331-06 doi: 10. 7606/j. issn. 1000-4025. 2016. 07. 1331

KE ShPRP3 EARIEEREEFRMRE
JE £ W BB £ E

2 ELK ELpnALE O #LK O

(1 FFFFMIR R ARl 5 R B I35 S5 I /K 16100652 S0 1145 85 B2 B} 2 B 55 BT, BB U155 5F /K 161005)

W OE.NUFR KT Glycine max L. ) 40 M B il 2 02 5 4878 1 5L K (SOPRP3) 78 306 55 38 vh i 46 B 1) 52 i 2%
& it PCR, X SOPRP3 e 46 . T R LR AL IE T 19 2B 0L #E TR, 25 BoR, ShPRP3 fE & #h b ¥ T £ ik
T E L ET RAREAL T Rk BT w5 AL, ¥ SOPRP3 4 @ B ¥) % 35 24K pRILOL-AN | J3f 5 Ak S0 7L,
AT BA PR B AR B 3 ko % B DRI A R AT = L L T R AR W A FE . 45 R BT, 50 B L E RIT
T b TS P R DR AR i R PR R A L TP I A A E T Ak T e A DR R SR R R Y
S RRAH LA B 25 5, I HEN ShPRP3 W] L3 i s i DR A B (1 T 2 i 4
KBRS IR B EE N ; SOPRP3;RKIA T s LI

FESES.Q785;Q786 XHFR ARG A

Expression of SbPRP3 in Soybean and Resistance Ability in
Transgenic Tobacco to Abiotic Stress
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Abstract: Plant proline-rich proteins (PRPs) are putative cell wall proteins, which are usually associated
with different abiotic stresses. The expression of SOPRP3 under abiotic stress treatments in soybean was
detected by real-time fluorescence quantitative PCR. The expression of SbPRP3 increased under salt treat-
ment, while it increased firstly and thereafter declined under drought and cold treatments. Furthermore,
the ORF of SbPRP3 was cloned into the plant expression vector of pRI101-AN and then introduced into to-
bacco by Agrobacterium-mediated transformation. Three positive transgenic tobacco plants were obtained.
The transgenic tobacco plants were treated with salt, drought and cold stresses. The results showed that
the transgenic plants maintained higher levels of proline and lower level of malondialdehyde compared to
wild-type plants under salt and cold stresses. While the levels of proline and malondialdehyde in transgenic
plants had no significant differences compared to wild-type plants under drought stress. These data indica-
ted that the transgenic tobacco plants constitutively expressing SbPRP3 showed an increased tolerance to
salt and cold compared to wild-type plants.
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100 e A7 iX SE B | 4008 5 28 8 7 BRIl b
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1.1 KA RE A8

KT Glycine max L) fFh &3 467 f155F5F
MR K it f Se i = AR A . VO R 4 e T
&7 200 mmol/L NaCl ) MS 55 3% & P 17 = &k

REFR B T &4 20% PEGS000 i) MS 15 3% Wy v it
AR T S0 B 8 T 4 CHE 4 h ik R Ak 2,
Ay BIALFR 0.1.2.5.10 F1 24 h j5 BUEE , 85 Bt A
HETWAT, —80 CIRAaER.

1.2 F &

1.2.1 /& RNAH 5 DNA 48 K H Plant
RNAzol 351 Chy [ 24 ) £ B K AN [a] Ab 2 B[R]
M E 48 RNA L3 BB cDNA 45— 55 4 i 7 & (b
EAED U 45 A& 8 — 8 cDNA, —20 C IR 4#
#wH .
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HH 791 (GenBank % 5% %5 J05209) & it % 06 & &
PCR 3| ¥ YF (5'-GGCTTCCTTTGTATCCTTC-
CTA-3") 1 YR (5 -ATGGGTGTTGTCCTC-
TACTGG-3"), 7 BIO-RAD CFX96 Real-Time
PCRAY I IR A A £ ik Fe A B Tubuin (Gen-
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AN TR b B [E] £ R cDNA iR . R R 2
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R OFHEERMMEX R, KL R A BIO-
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HE, A 55 B DI B0 - cDNA Sy B %k BR, 3R 47 5%
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Fig. 1 Expression of SOPRP3 with different stress
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Fig. 4 RT-PCR detection results of SOPRP3 transgenic
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