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Abstract: Two varieties of Vicia sativa 1.. with different Cd tolerances (Cd-tolerant variety 1.3, Cd-sensi-
tive variety ZM) were studied to compare concentrations of ascorbic acid ( AsA), activities of de-
hydroascorbate reductase (DHAR) isoenzymes and ascorbate peroxidase ( APX) isoenzymes, and APX
gene expression in response to Cd treatment in the roots. Results showed that: (1) Cd treatment signifi-
cantly increased the concentrations of AsA and dehydroascorbate (DHA) in the roots of both L3 and ZM.
Cd treatment also tended to increase ratio of AsA/DHA in L3, but to decrease the ratio in ZM. At the
same Cd treatment, L3 roots had higher AsA concentration and AsA/DHA ratio than that of ZM. (2)
Four isoforms of DHAR were obtained in 1.3 and ZM roots by native PAGE and their activities generally
increased with increasing Cd concentration. DHAR1 was obtained only in L3 and DHAR4 only in ZM. At
equivalent Cd concentrations, the total activity of DHAR was higher in roots of 1.3 than that in ZM. (3)
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Eleven APX isoforms were obtained in both L3 and ZM roots by native PAGE. APX1., 2, 4 were induced
by Cd treatment only in ZM and the activity of APX8 was more significantly induced in L3 than that in

ZM. An APX gene was cloned and subjected to RT-PCR analysis. The gene expression level was upregu-

lated under Cd stress in the roots of both varieties. These results suggested that concentration of AsA, ac-

tivities of DHAR and APX, and APX gene expression level increased in response to cadmium stress in the

roots of two V. sativa varieties. It is possible that the more effective AsA recycle in the roots of 1.3 con-

tributed to its higher AsA concentration than that in ZM, and this could be related to its stronger protec-

tion from ROS generation and finally contributed to its higher tolerance to Cd stress.
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L' HCI Wb E ki 6 5t L 3R i
) 2% . ZEIBKIETE . B .

APX f4) native PAGE % J 4 % i vk 4 it 7 8 %
(50 B . APX A9 36 M 44 2 R ] Rao %57 (1 J7
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i) PBS(pH 7. &)/, 82 $E 5, Y4 {4, 10 ~ 15 min,
KV AR . AR
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GTGATGGTGTGAGTC-3"; & [ : 5'-ACAGCAA-
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Fig. 1 Effects of 25 pmol -

L' Cd treatment on root elongation and increase of root fresh weight in two V. sativa

varieties, 1.3 and ZM
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(0 pmol « L™ Cd) 25 T » 2 A i & Bl & i B (19 A
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JRBEME Evans blue 3 il 5 €4, 130 W ML 2 40 i X Ev-
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FETR AR G A BT A 5 A FR B K . FRAGERR 2 A4S
i B A AR 2R Evans blue W I & 19 53 #r 3% W]
(K 3), 10~50 ymol « L "4@4b ¥ 7 d J5 .2 D&
56 2ot A AR 2 Jo 5 12 52 3] B R 400 40 400 400 e R i
A 3 B G 1 T Sk R0 5 AR A (R SR AL B T
ZM MR 1) o A A R B B 35 KT L3,
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T 1R ER S WEREI 7 dJ5 2 8w
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Fig. 2 Histochemical detection of lipid peroxidation

by Schiff’s reagent in the root tips of two V. sativa
varieties, 1.3 and ZM
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Fig. 3 Quantitative assay of Evans blue uptake in the

root tips of two V. sativa varieties, 1.3 and ZM
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£1 AARERMELFET 2/ EBRE RHMIRZE ASA.DHA & 2751 AsA/DHA Lt{&
Table 1 The concentrations of AsA, DHA and the ratio of AsA/DHA in the roots of two V. sativa varieties L3
and ZM under Cd stress

L WAL B IR TSP IA Ifi R j‘;l%lﬂl@é?/A
Cultivar Cd concentration/ AsA content DHA content B8 S HIR 1l R
(pmol « L™H (pmol » g~ 1) (pmol « g~ 1) AsA/ DHA
0 0.3020. 03e 0.3740.02¢ 0.8370. 12bed
10 0.9220. 03cd 0.53240. 13bc 1.82% 0. 44a
v 25 1.18%0.01b 0.69=0. 10b 1.724 0. 24a
50 1.63%+0. 19a 1.4140. 19a 1.174 0. 20b
0 0.4270.07e 0.414 0. 03¢ 1.014 0. 19bc
10 0.8320. 02d 1.39% 0.06a 0.600. 04d
o 25 0.9740. 05¢ 1.51% 0.10a 0.65+0.07cd
50 0.790. 04d 1.48+0.42a 0.5840. 10d
VLSRN 3 YT 9 0P AR (n=3)
Note: Values are means=®SD (n=3) of three different experiments
L' ChRETE ;LI MRAN AsA/DHA FAE X L3 M
HE 3 Tk e o T ZM AR R 1Y AsA/DHA B 50 H]
WEWRAE . 76 M 60 AL VR R L L3 BRI AsA gﬁiﬁ;:
oM AsA/DHA IWEB R KT ZM, DL 45 DHAR3—»
VLT HR A T B L3 AT R B ZM iarad

TR AE AsA FIAERE AR JRFR A Y g
2.4 EEM2ASGERERFHR R DHAR T
A i i 5 M

XPERAL I 7 d 1 2 A B0 AR R Y T
PR (4R U 64T 06 M H Uk R DHAR W& #E e o, nf
U 4 % DHAR HI@E S (B 4D, X 2B A T A9
I Pk 3 B G A AL PR ok B Y T i T . 3L
DHAR1 H#E L3 # & WoRr, i DHAR4 H7E ZM
&R R . DHAR2 F1 DHARS £ L3 R R iy 1%
P T ZM, F— 25 X A A 1 E AT o AT
P45 B oR , 78 10,25 F1 50 pmol « L' 4R b BT
L3 Fl ZM AR % 7 DHAR [A] T fiff & «ﬁﬁﬁj%%%ﬁm
PR EE 59 T T 2 T . (R 25 A1 50 pmol
FRAMER R, L3 AR R DHAR 09 2 7% o 4 9l & ZM E‘J
1.25 F1 1,16 i, 3% T ZM,
2.5 EHEXMN2ISKEREMMRE APX [ T
R E RIE W0

XPERAL I 7 d Y 2 AN B0 R AR R Y AT
PEEE 1 ER IO AT 3 PR L UK R APXO I M 5, w)
UL 11 % APX [6] T.E§ 5% (K 5, Hrf, APX 5.6,
9,10, 11 ZRAFTE 2 A B AR & h 88 32 40 W 38 75
F5APX 1.2.4 A 16 ZM AR R P 2 58 i ) 3%
WS HAE L3 MR R b N2 a5 5 APX3 2%
WAE 2 A SR AR 3R 2 32 55 T 38 17 8 i ) G S

0 10 25 50 0 10 25 50
A JE
Cd concentration/( L mol * L ")
K4 SRiaa T P B AN L3 R ZM R &
DHAR [A] T i ii%
Fig. 4 Changes of DHAR isozyme profile under
increasing Cd concentration in the roots of the two

V. sativa varieties, 1.3 and ZM

L3 M

APX11—

0102550 0102550
i e EE
Cd concentration/( 1 mol * L")
5 AR BE R E T 2 A8 B R L3 Al ZM
& APX [ T A 192 1k
Fig. 5 Changes of APX isozyme profile under
increasing Cd concentration in the roots of the two

V. sativa varieties, 1.3 and ZM
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Fig. 6 Real time RT-PCR analysis of APX gene in
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response to 25 pmol » L™! Cd treatment in the roots of

two V. sativa varieties, L3 and ZM

E25APX 7.8 J& 2 N B E M APX [R] T 4571
FE 2 A i Rl e X [ 25 0 Ak B R A s i o L L
HAPX 87E L3I APRK ZIM A ., #H—4
XiF B A% iy iR R E AT A T R B, 10,25 R
50 pmol « L "4 4b#F L3 il ZM M & th APX [
T A M A Rk IR I T R AR L3 AR &R 4 il
SRR 1. 06,109 1 1. 16 4% ;78 ZM 4R 2 rh 43 5]
JENTREGY 1. 16,1, 21 F0 1. 26 435 ; A R 4% 4b 39 v i
FL,L3 5 ZM i & h APX [ SIS HIRA B EX R,

[l i — 2538 3 98 6 i RT-PCR %48 T 4%
e 2 A E S SRR T AR APX
SR FRTE O, KW MEHES T X — APX 3t
R e s 3R Gk (E 6) . Forp JFE 4R 3 A0 31 12 ho i
2 AEE B E S AR R iz APX JEH ) KA E W
GBS APX 3 DAY 2R 3k 7K T Bl 4R B 3E Ak 2R
[F1) 1) 2 A AR 70 X B 3k B 1 2. 0 i A2 A /KL T
UG R ERTE S =

3w

ERI O R R IR W AR K EEDT — R
Xt AR A0 1 5 b S 7 L AR A AR ) 4 T 2 e B
TR B0 R SR Y R . AR
Hh S 0 T A R ZMAR A K Y R 3
KT D 135 ZM AR 42 5 i ok 40 1k 1 5 46 43 7
5 R L3, X4k 2k B B 5 Ah ZM X 4 i ae
kb L3 Bk,

[ B o A F 5% v 4 30 0 2 4 3 7 99 L AR
F AsA AR W TR T E A 4R AL RV T
L3RR AsA & T ZM, DHA & 8L F ZM,
AsA/DHA W HAEIR AR T ZM, X i AsA 2 5

THRI A T S B G AR R A R, L3 AR R H
A SR LA AL R AR RS BB T X AT B
J& L3 B ZM HA o ) 2R 22—,

RN AsA 7K BRIETF AsA 1A B G
I A N 8 S AT L As A iP5 LE A W Wy 38
M) Jo7 S T AR Y . AsA SRR TE
DHA —J5 i Al 78 DHAR ML F i8N AsA, 5
— 5 AT LA K OK f# R 2, 3- 9 R
DHAR i1t DHA i Jii, 7T LLygi /> DHA (1) 53 ff . {2
HE AsA MG FEAE . ARSEE P 2 AN BT 5
R ZR AL % 3 4 4 DHAR [R] Tgafy , 3 26 W] T/ 1)
T P 0 I Ak e B 1) T v T A 3 v U
Wi F AR R DHAR 76 Pk 2 4 b aa 1) & %% 5. M 1)
FEAAbPRMR BN L Wb S AP L3 M R DHAR #9206
B TS AP ZM, X AT REAE L3 AR R ZM A 5K
HAEHE DHA B J5 R AsA LT B4 T &1 AsA KF
1 AsA/DHA H.fE, Chen %75 3 38, 78 M 25 F1 E
Kt Fat F ik /N DHAR S Al 4% 5 DHAR 7§
PRI AsA & 8 F AsA/DHA Fff. Yin %5023
HRiE i R IR ST DHAR JE A9 00 B0 R Mk AsA &
A APX I PR A 38 R B0, R A T R
FRIE R A PR AR 59 ROS R T AMARY
I ST AMA ROS B9 3 B % 55 e A% 490 0 Tid 1 A o 22 4
FH . ARG A0 A B 5T & B SR E R 2 A B
T AR R ROS F2 A R T 40 i BE R A i s
], AsA SR T AMA P R E bR L T
AR AMASZ AsA I AH G EE . BT A& AsA &
fE7= A i DHA 38 18 AsA/DHA 538 (K538 1 i
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