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Abstract: Miniature Ping (mPing) is a prominent member in Tourist-like superfamily of Miniature Invert-
ed-Repeat Transposable Elements (MITEs). It is the first active MITEs identified in the rice genome and

one of the few MITEs which keep low copy numbers and maintain mobilization under natural condition.

Therefore, it is an irreplaceable material for the study related to transposon. This paper comprehensively

demonstrates research progress of mPing through analyzing its structure, transposase donor, activation

characteristics, and its influence on genome, looking forward to lay foundation on advanced research of

transposition mechanism of MITEs and the further development and utilization of mPing.
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The structure of DNA transposons (Class [[ )
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Fig. 2 The structure of mPing, Ping and Pong
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