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Expression of Key Genes Involved in Lipid Biosynthesis and Accumulation
during Seeds Formation and Development in Hippophae rhamnoides

DING Jian"?*, RUAN Chengjiang'* , SHAN Jinyou’, GUAN Ying®
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Abstract: To explore the relationship between lipid biosynthesis and relevant gene expression in sea buck-
thorn seeds, we harvested the developing seeds of the line ‘Xin’e 37 with high oil content and the line
‘Suiji 17 with low oil content as experimental materials on June 25, July 6, 17, 28, August 8 and 19.
These two lines had closed genetic relationship. The oil content in seeds was determined by the method of
chloroform methanol, and the expression profiles of GPD1, DGAT1 and DGAT2 genes involved in lipid
biosynthesis were tested using real-time quantitative PCR. The results showed that: (1) the oil content in
the seeds of ‘Xin’e 37 was higher than that in *Suiji 1’ except for July 17. The rapid accumulations of seed
lipid of these two lines were during July 6 to 28, and the increasing rates in ‘Xin’e 3’ were higher than
that in ‘Suiji 175 (2) the high expression of GPD1 gene occurred in the period of rapid lipid accumulation,
which may speed up lipid biosynthesis in ‘Xin’e 3’ seeds through promoting the biosynthesis of glycerol-3-
phosphate. The expression levels of DGAT1 and DGAT?2 genes in line ‘Xin’e 37 were higher than that in
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line ‘Suiji 17 during lipid accumulation. Thus, GPD1, DGAT1 and DGAT2 genes may be associated with

the high accumulation of lipid in *Xin’e 3”7 seeds. These results provided scientific bases for validating the function

of genes encoding for rate-limiting enzymes involved in sea buckthorn lipid biosynthesis and accumulation.
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Fig. 2 Changes of oil contents in the seeds of lines *Suiji 1’

and ‘Xin'e 37 during seed formation and development
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Fig. 3 Differences of GPD1, DGAT1 and DGAT2 genes expression in seeds between the line ‘Suiji 1”7 and ‘Xin’e 3’
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