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Isolation and Expression Feature of Peroxidase

Genes from Three Caragana Species
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Abstract ; Peroxidase (POD) genes were isolated from three Caragana species, C. korshinskii, C. micro-
phylla and C. intermedia (designated as CRPOD, CmPOD and CiPOD, respectively) using homology-
based cloning techniques, and their expression profiles under drought stress conditions were investigated.
All of the cDNAs of CkPOD, CiPOD and CmPOD contain an open reading frame (ORF) of 1 074 bp, en-
coding a protein of 357 amino acids with a theoretical molecular weight of 38. 7 kD. Phylogenetic analysis
showed that these three Caragana PODs could be clustered into one clade with their isoforms from legu-
minosae, including Cicer arietinum. The PODs of C. korshinskii and C. microphylla showed a closer rela-
tionship compared to C. intermedia POD, corresponding to evolutionary history of the three Caragana
plants. Real time RT-PCR revealed that the expression of the Caragana POD genes was strongly induced
by PEG-simulated drought stress, showing that the Caragana POD genes play an important role in resis-
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ting drought-tolerance. These results may provide theoretical and experimental basis for understanding the

drought-tolerance mechanism of the Caragana plants and for their utilization in desert improvement and

vegetation restoration programs.
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RACE ¢DNA Ampliication Kit(Clontench), DNA
Gel Extraction Kit (AXYGEN) . Takara RT-PCR
Kit(TaKaRa) . X i #1 & J& 52 %% (Escherichia coli)
DHb5a ( TaKaRa ), TransScript All-in-One First-
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F A TaKaRa RNA Extraction Kit $#2H 3 Fj4H
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Deg-POD-R 3514 . 2 PCR "3 CRPOD K:[H
B, PCR s W&k & .10 X PCR buffer 2. 5 wl.
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Takara rTaq(5 U/pl)0. 2 L, N8 7K E 25
pl, FRIZAEH:94 C 5 min;94 C 30 s,47.5 C
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AR E 315 59 CRPOD 3 H R %1 % 11 1% 3k 4 4
SS9 POD-GSP-R (5-GAGCAGCAAGGGCAA-
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TCGTGGACCG-3" s I F K ¥t o . ] il SMART
RACE ¢DNA Ampliication Kit %] & & 5 <DNA
55— 4 F) ] POD-GSP-R F13t 7 £ 42 it iy UPM
519191 CRPOD [ 5" A b J¥ 51, PCR J B 14 %
#7:10 X Ex PCR bulfer 2. 5 L, dNTPs (£ 2. 5
mmol/L)2. 0 L MgCl, (25 mmol/L)2. 0 L . POD-
GSP-R(10 pmol/L) 1.0 pL,UPM(10X)2.5 uL,
Takara Ex Tag HS(5 U/ul)0. 2 pl. i 258 7K
225 pl, WA HR:94 C 5 min;94 C 30 5,50
C 305,72 C 1 min,35 ™ME¥ ;72 C 7 min, FH
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(10 pmol/1)1. 0 pL \M13M4 (10 pmol/I)1.0 pl,
Takara Ex Taq HS(5 U/ul)0. 2 pL, 228 5k
25 pl, W AR 94 C 5 min;94 C 30 5,60
‘C 305,72 'C 1 min,35 MEH;72 C 7 min,
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a5 JL POD ¢DNA £ K73, PCR &R R .
10X Ex PCR buffer 2. 5 yL dNTPs(£ 2. 5 mmol/
L)2.0 pL MgClL (25 mmol/L)2. 0 pL.Full-POD-F
(10 pmol/L) 1. 0 L, Ful-POD-R (10 pmol/L)1. 0
pL.Takara Ex Tag HS(5 U/pl)0. 2 pL, 281
KE 25 pl. W& R:94 C 5 min; 94 C 30 s,
49 C 30 5,72 C 1 min,35 P™MEFH ;72 C 10 min,
P & 100 Bl s W EE R UK 4 B R T
DNA Gel Extraction Kit B H 89 F B, 5 v & 2%,
& pMD-19T 3% 422 31 5% 4k K #T 7 DHS5a Ji 3z 25 4
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W2 Y 4 () He AR BT g AT BN . 7E GenBank 48 &
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ing, N-J 2 #4 # R Ge b
1.2.3 3MEBILEEY POD EFREFTEHET
BIRERI T R T IX 3 Rl R XS LR A
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Ck-ACT-RT-F: 5'-CAACCCTAAGGCTAATCG -3',
Ck-ACT-RT-R; 5'-GCATAAAGGGAAAGGACA -3")
fE B N %, i A TransScript All-in-One First-
Strand ¢cDNA synthesis SuperMix if ] & & % cD-
NA; Jff#i ] TransStart Tip Green qPCR SuperMix
(TransGen) X & #1752 B 98 6 7 PCR.,
W& K:2X TS Tip Super Mix 10 pL. Primer-F
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(POD-RT-F il Ck-ACT-RT-F, 10 pmol/L) 0. 4
pL. Primer-R (POD-RT-R I Ck-ACT-RT-R. 10
pmol/1)0. 4 uL cDNA 1.0 pL. bl 8 F K % 20
plo SR 404 :95 C 10 5595 C 105,58 C 15 s,
72 °C 20 5,48 DGR IE ML 65~97 C. i fy
SR AT 3 TR LI HUE 48 SPSS 19. 0 B
PTG A IF 2 A

2 AR5

2.1 3MMEB)LEEY POD EEM R E
2.1.1 #&4%EBJLPOD EEEBRABEIINS
B DT AH A JLE RNA R SERT A LR cDNA
55— BN, A HIFE POD fR5F X5 1y 39151
¥ Deg-POD-F 1 Deg-POD-R, jfi i RT-PCR " 4
AT T 500 bp MFEH B B (K 1, A) ., Blast X 4047
IR RS W7 51 5 Al = SF AR Y POD ZE 7
G LA v B TRV IR vT 0 28 A L R A AR R S LY
POD F:H R B, 3% Hofi 45 4 CRPOD, #4562 4K
31 500 bp ) CkPOD J:H ¥ 5 ¥ 15 51 4
POD-GSP-F 1 POD-GSP-R, 5% F§ RACE # A 4 B
T CRPOD ) 3" K3 551 570 bp(J& 1,B) I 5' K s
JF%1 500 bp(& 1,0,
2.1.2 3MEBILEEY POD ERE£KFEIHNE
BE AT ARG L v (15 G LA N i G LY
RS G FR BT, MO ) Y IR IR B R I VR AT X 3
P4 POD 3£ 7 51 /)4y % . 1 CRPOD iy 5K
Wi it 51 4 Full-POD-F. 3" K ¥ #% it 51 % Full-
POD-R, 435 L4 3 Fr 4 3% )L JE A 4 B RNA 5 5
1350/ cDNA 5 — 55 BB, 4 PCR §7 3 3645 T
1074 bpfy L FEH] (B 2) . 18 2 5 F1 43 07 s SiE

M. 100 bp Ladder Marker; 1. 33 PCR =#);2. 3'-RACE;3. 5-RACE
Kl 1 3t PCR F1 RACE-PCR 724y
M. 100bp Ladder Marker; 1. Product
of degenerate PCR;2. 3'-RACE;3. 5'- RACE
Fig. 1 Products of degenerate PCR and RACE-PCR

SCEAT R AT SRR L b ) A XS L R/ i B R L
POD 3£[H ) cDNA ¥4 .

2.2 3 MEBILEEY POD EEF 5 o5
CkPOD . CiPOD F1 CmPOD 3t cDNA # {1 &
1074 bp §9TF 3 B2 HE CORF) L i i 357 D IERR .
FIH ExPASy ¥4l 2 H #9 PortParam 1 {4 78 £ 43
Bk 3 5 7% . CkPOD, CiPOD 1 CmPOD i % 1143
T8k 38. 7 kD, B AF HL & 43 Ok 6. 98.6. 09
6. 59, FIFHAEL KA TargetP HEAT 43 B 45 1
N3 FAE Y POD ¥k b b i i . B
BA 28 MR 5 K (& 3) 15 JE 45 1y 8 Tt
MR L3 MY POD A ¥ BA 3 AN 4k H
W (7~26 aa,119~144 aa,182~201 aa,[® 3), #4&
REZFFEY A POD -5 1Y 8 4> 2F bt 2 ik 4% Sk
B R IAE P SRR 3 ALK ¥ 51 (40 ~120,73 ~
78.126~328 Fl 205~237 £51), BT W AL 4 4
SRR ) B EEAT LA S A R E . 5
A L Asp-72., Asp-79.Ser-81,Val-75 F1 Gly-77 &
T Ca® 45 A 7 15 AR ARCAZE ity 119 4R L A4 235 44 33K, T
LI Thr-199. Asp-250., Thr-253, Asp-258 il Val-256
Sy i Ca®' 45 G A 8 Y BT 3 B A AL A4 45 4
W, fF 2 g E g E Wl Fe 5
His-71 F His-198 J& i AN 5 o 44 B0 P 0 s His-
198 5 Asp-275 il ik S5 B DK W BF L 16 Bl 4 5 i
ZLRTE MO AR E (B 3) .,

FIH Clustal W k{4 % CkPOD. CiPOD Fi
CmPOD c¢DNA #1472 & bt & 8L (&l 3),3 )75
WA 23 MEFFRR AR . HHp CEPOD 1 CmPOD ]
H 11 MR AN E ,CiPOD 1 CmPOD [8]14 16 4~
BAF R AR, 1 CRPOD F1 CiPOD [a]W 4 19 A%

M. DL2000; 1. ##2&#a8JLs2. i #ixg JLs3. /ANk4 g JL
2 cDNA &K 545§ 1
M. DL2000; 1. CEPOD c¢DNA;2. CiPOD cDNA;
3. CmPOD ¢DNA
Fig. 2 Amplification of full-length cDNA
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gk atgaagtacteccttegtetecacagtgacagetetgtgetgtgttgtggttgtgtttggagggtttececttctectecagatgeacaagaa 38
i g ¢
C.m a 90
Ck MK YSLRLTVTALCCVVYVYVFEFGGEFPEFSSDARQE 30
C.i 30
C.m 30
(k ctagataactegttttacaagaacacttgteetaaggtteattcaattgtgegtgaagtegtaaggaacgtttecaaagacggaceceege 180
C.i C ag a—t—c C t t 180
C.m g ga t—g—t t 1 c 180
Ck LDNSFYKNTCPKVHS T VREVYVRNVSKTDPR 60
Cli D N 60
C.m N K 60
A
f;k atgettgetagtetegtecaggetteactttecatgactgttttgttcaagggtgtgatgegtecagttttgttgaacaacactgetacaate g;g
0 a g 2
C.m g S a 270
gk MLASLVRLHHIFHEDCFVQGCDAS|VLILNNTATI 88
L
C.m . $ e a . ® 4 o ® 90
gk gagagcgaacaagaagetttteccaaatatcaactctttaagaggtttggatgttgtgaacaatatcaagacagecgttgaaaaagettgt ggg
S
C.m 360
g .k ESEQEAFPNTINSILRGLDVVNNTIEKTAVETZ KATC ]1 %8
0
C.m 120
* A
gk cccaacacagtttettgtgetgatattettgeecettgetgetcaaatatectetgt Lctggctcamgg?ccaaat tggaaagttcectttg jég
0 c 7 £
C.m -t l,———? — 450
Ck pPNTVSCADILALAAQILI SSVILAQGPNWIKV P L 15
Cli D 150
C.m - - - - - - - - - - - - = = - - - - — |- - - - -] - - - - - 150
A
gk ggaagaagggatggtttaacagecaaccaaagecttgetaatcaaaaccttecagetectttecaaccecactggatcaacttaaageegea :1418
0 C b)
C.m - E o c 540
Ck GRRDGLTANI QSLANQ@NTLPAPFNPILDA QTLZKAA 180
C.i - - - - - - - - - - - - - - - - - - - - - - - - - - - - 180
C.m . 180
gﬂk tttgetgetecaaggecteageactactgatetagttgeacteteaggtgetecatacatttggaagageacactgetetttattegtggae g%g
i t ;
C.m t g 630
Ck FAAQ GI[L S TTDILVALSGANTTEFGRANTCSTLF|V D 210
C.i - S - - -/- - - - - - - - - - - - - - - - - - - - - - —-/- - 210
C.m S 210
* © A
gk cgattgtacaacttcageggtactggeaaaceggatecaactet taacgeaacttact tgecaagacttgegtaaaacatgecccaatagt 758
S a
C.m § a 720
gk RLYNTFSGTGK?PDPTILNATYLAQDILZRIEKTT CPNS %/418
0 2
C.m 240
A
gk ggaacla lt,c gataacctegecaattttgacccaaccacacelgataaaticgacaagaactactactccaatettcaggtiaaaaaagge 2}8
S
C.m c - 810
gk G T { DNLANFDPTTPDI KT FDI KNYYSNLZ QYVKTZK®GC %;8
S0 2
C.m - - 1T - =-=-=- - - - - - - - - - - - - - - - - - - - - - = 270
) . ° ° °
Ek ttgcttcagagtgatcaagagttgttctcaacagccggtgcagatactatcaacattgtcaacaagttcagtac%gaccaaaatgctttc 388
S0 . ¢
C.m t - 900
Ck LLQsSDQELFSTAGADTTINTIVNI KTESTDAQNATF 30
C.i 300
Cm - - P
gk tttgagagctttaaggctgcaatgatcaagatgagtagtattgg‘rtgtgctgacagggaacaa&ggagagattagaaaﬁcactgcaacttt 388
S0 9¢
C.m - c e — 990
g.k FESFKAAMI KMSSITGVYLTGNIE KT GETLRTI KUHTCNE %%8
i e« 1
C.m - - - - == = - - - - - = = = = = = = = - - 2 - - 330
gk attaacaaacaatctgttgaacttggtctagecactgtggectecaaggaatcatcagaggagggtatggttagttcaatetaa %8%3
S0
Cuam T 1074
Ck I NKQSVELGLATVASKESSEESGMVSS I * 357
C.i - - - - - - - - - - - - - - - - - - - - - - - - - - % 357
C.m - - - - - === e T 357

Co k. Fp 483G Cod. RS L5 C.om. /N5 3G L5 PIR N AR 5 K7 51 L R 2 5 B A R 5 HE SR 35 4 o A U7 91 L @R & Ca?t
S5 O B TR B 5 AR B U B Y I R R R T @ 3R 0% T AR AL 5 B0 U R R S 1) % 5 LT 3R 4 5 A O il A R R

K 3 CkPOD.CiPOD 1 CmPOD KJ cDNA J & 3 v 51 L Xt

C. k. C. korshinskii;C.i. C. intermedia;C.m. C. microphylla; Wavy lines indicated the putative signal peptide, underline indicated

the transmembrane domains, the boxes represent the putative catalytic domain, ¢ indicated the Ca?" site hydrogen bonded to the

residues, a indicated the cysteine residues involved in disulfide bridges, ¢ indicated the active site residues and 4 indicated

the residues bonding to heme iron atom

Fig. 3 Alignment of ¢cDNAs and amino acids of CkPOD, CiPOD and CmPOD

A, X CkPOD, CiPOD #l CmPOD i 4 % g
FEA AT FE X 45 R B % . 3 Fh POD Z [a] HA 5 N4
IR A, Hdp CkPOD 1 CmPOD & 3 4N AT 1Y
GAKLIR (145,182 Fl 243 aa) , CIPOD Hl CmPOD 1
H 3R B IR (38,42 il 243 aa) . ifif CkPOD

A CIPOD A 4 A~ A [l i 2 5L R (38,42, 145 FT 182
aa, [ 3) . JET 21 A POD & P19 BE R T )
MR 1 R G A A 5 . 3 Bl A8 JLJE HE 9 9 POD
5 g S S AME Y POD R (B R — 2. WA
RS LA/ X8 LI POD BA #0019 S5 406 2 5 1l
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