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Cloning and Expression Analysis of AGO Genes during

Maize Seed Development
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Abstract; The expression profiles of 5 AGO genes(AGO1,AGO2,AGO4,AGO10 and AGO18)in different de-

velopmental stages of maize seed(Zea mays L. inbred line, ‘Chang 7-27)after pollination were analyzed by
the method of real-time quantitative PCR. Results showed that, the expression pattern of AGO1 and AGO2

were similar during maize seed development, showing a decline trend from the 7" day after pollination
(DAP) to the 20™ DAP, with much more accumulation at the 7" DAP. The expression pattern of AGO4,
AGO10 and AGO18 were similar, with a trend of being decreased first then increased, with the lowest ex-

pression at the 10" DAP. With our previous results of expression pattern of miRNAs during maize seed de-

velopment, we found that different AGO gene families together with their target miRNAs, can involved in

the regulation of maize seed development.
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