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Abstract: With the method of Illumina MiSeq sequencing, we investigated the seasonal dynamics of arbus-
cular mycorrhizal fungal community in the rhizosphere of Clematis fruticosa in the arid sunny slopes of the
Dagingshan Mountains. By the methods of redundancy analysis (RDA) and Mantel test, we also analyzed

the relationships between AMF and soil and plant factors. It would provide important scientific basis to
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further discuss the response of C. fruticosa-AMF symbioses to climate changes in different seasons. The
results indicated that: (1) Spore density of AMF was no significant difference among seasons, but coloni-
zation rate and arbuscule abundance of AMF had a decreasing trend from spring to autumn. (2) A total of
163 AMF OTUs (operational taxonomic units) were detected in three seasons, 116 OTUs, 76 OTUs and
70 OTUs were detected in spring, summer and autumn, respectively. (3) AMF richness (Observed OTUs
and Chao 1 index) and diversity (Shannon-Wiener index and Invsimpson index) of summer and autumn
were significantly lower than that of spring, but there were no significant differences between summer and
autumn. (4) Principal coordinate analysis and PERMANOVA analyses indicated that AMF community
compositions of summer and autumn were significantly different from that of spring, while the difference
was not significant in summer and autumn. (5) RDA analysis showed that sampling season, plant cover-
age, plant diversity, soil moisture content and soil organic matter significantly influenced Shannon-Wiener
index, Invsimpson index, Chao 1 index and Observed OTUs of AMF. Mantel test indicated that sampling
season was the driving factor to affect community composition and colonization rate of AMF, but had no
significantly influence on spore density, soil organic matter was the driving factor to influence spore
density.
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Table 1  The comparison of soil and plant factors in different seasons

K F Factor # 2= Spring HZ Summer FkZ= Autumn
pH 7.50+£0.07a 7.55+0.11a 7.62+0.10a
WAL A Available N/(mg/kg) 167.95+7.97a 180.99411.47b 179.1245. 25b
AL Available P/(mg/kg) 3.08=£0. 27a 3.46£0.23b 3.52£0.23b
+ A PR Soil organic matter/(g/kg) 33.87+2.31a 27.284+1.41b 27.5241.60b
+ 34 /K& Soil moisture content/ % 7.7240. 44b 10. 2840. 46a 8.29+0.37h
) Shannon-Wiener £ #£ £ 35 %1 Shannon-Wiener index 1.56+0. 18a 1.74+0. 16a 1.72+0.12a
9% 55 B Plant coverage/ % 56.67+2.36b 70.7343. 24a 68.3341. 86a

T B B E R ER (0= 9) 5 R — 47 807 A R 7 B R R TR 0,05 JKF B2 5 3

Note: Data are means+ SE. Data with different letters in the same line indicate significant differences at 0. 05 level
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Fig. 1 Spore density and colonization of AMF in

different seasons
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% 2 Illumina MiSeq U /5 15 Zl f AMF FF 5 #{F1 OTUs %
Table 2 Number of sequences and OTUs of AMF from all

soil samples obtained by Illumina MiSeq sequencing

%3 AEZH AMF B % AR PERMANOVA 417
Table 3 The results of PERMANOVA analysis of AMF

community composition in different seasons

AMF B AMF community

Z=5 Season F P
7 vs 2 Spring vs summer 1. 836 0.036"
# 72 vs Bk ZE Spring vs autumn 1. 996 0.023*
B2 vs BkZ Summer vs autumn 1.318 0.169

751 8% OTUs #
%5 & Seuemet ol OTUS
1 BREEJE Glomus 110 217 95
2 uncultured-Glomeromycota 32 628 25
3 R ER R Diversispora 21 481 19
4 AR S Claroideoglomus 8 167 6
5 J& B 2% )8 Scutellospora 8 024 5
6 ENEE )R Funeli formis 7 239 4
7 Rhizophagus 7 318 4
8 KRB Paraglomus 3023 2
9 Ambispora 2 104 1
10 Seproglomus 1937 1
11 JR 4% )8 Archaeospora 1984 1
70 mm 72 Spring
3 X Z Summer
60 B K Z Autumn

AMF OTUs %(H
Number of AMF OTUs

1 2 3 4

5 6 7 8 9 10 11
FEAR P AMF R
AMF community in soil samples

1. BR# % )8 ;2. Uncultured-Glomeromycota;3. 214 %) ;
4 EWIERREE 5. JEEMER)E 6. EWERE ;7. Rhizophagus;
8. HKBR¥EFIE ;9. Ambispora;10. Septoglomus;11. JREEF )R
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1. Glomus; 2. Uncultured-Glomeromycota; 3. Diversisporas
4. Claroideoglomus; 5. Scutellosporas; 6. Funeliformis;

7. Rhizophagus; 8. Paraglomus; 9. Ambisporas
10. Septoglomus; 11. Archaeospora
Fig. 3 Community composition of AMF based on number

of OTUs in different seasons
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Fig. 4 Principal coordinate analysis (PCoA)

of AMF community from different seasons
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Fig.5 Rarefaction curves of AMF richness (A and B) and diversity (C and D) in different seasons

B4ZSpring @ X ZSummer A KZFEAutumn
1.01

[
X
=9
s
8"
z A
Y S — .
-0.8 0.8

55—HliAxis 1: 20.52%

A. pH;B. BALA;C. S D. HHEAHLTE. LS KE;
F. t8%) Shannon-Wiener Z £ PEFE 8 G, AHBE AR s H. RAESY
6 AMF 5 B ZFEVE S RAETTY | ORI B
T RDA 43 #7141
A. pH; B. Available N; C. Available P; D. Soil organic matter;
E. Soil moisture content; F. Shannon-Wiener index;

G. Plant coverage; H. Sampling seasons
Fig. 6 RDA ordination plot showed the relationships
between AMF richness and diversity, sampling seasons,

soil and plant factors
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HEDEAMC, 5 EEAYTE R EIEMK,

A, F) ] Mantel test 4087 AMF £ 9% 2 % .
T~ %85 B R TR AR A2 % 36 55 SR ME 2R | A BRI B TR
FZRIBPRRE D GR K L IEA VL F & 5
FEH R AMEF BV 20 0l 96 %5 B RN AR A= e 325 ok
FERAT W 5 e AME B 9% 41 0 A AR A= e 325 +
e gk & R 2 R M R R B I R R Y I AMF
BEVE AL RAEZ 252 AME BV 21 AT TR AR
fRYL ) £ F KT, A BT 5 e A 5 R
FEFRHETF,

3

A 5% F A Tllumina MiSeq W75 AR B UGE B
T ST KR LT 5 BH B R B 4k AR [l AMF B
RN, BRTI Y EAT R R AR £ — s
ANETERER TS, {0 AMF 52 OTUs %4,
Chao 1 £ & B8 % .Shannon-Wiener 2 #1435 £ fn
Invsimpson ZFEME 18 500 # B 1 28 25 3L R 3k 3
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R4 AMFEZ BFEENHRELXREREST L EMEHEFZ B X RHT Mantel test 53 #7
Table 4 Relationships of AMF community, spore density and colonization rate with sampling seasons,
soil and plant factors by Mantel test
A5 & Variable AMF B4 AMF community 7% Spore density  BEAR{Z Y& Colonization rate
%5 No. £ Bk Name r P r P r P
A pH 0.0471 0. 3756 0.1414 0.0653 —0.0085 0.4939
LA Available N 0.0673 0.2496 0. 0470 0. 3869 0.1221 0.1526
C WA BE Available P 0.0732 0.2207 0.0718 0.2941 0. 0906 0.1782
D +HEAH P Soil organic matter 0.2754 0.0001 0.1512 0. 0045 0.1722 0.0037
E 4 85 sk i Soil moisture content 0.2873 0.0001 0.0130 0.4797 —0.0316 0. 4042
F ﬁﬂfﬁ%’;gﬁ%ﬁfﬁﬁ*E“ﬁ 0.2693 0.0001 0.0677 0. 2599 —0. 1009 0. 2030
G FH B 565 B Plant coverage 0.3029 0. 0001 0. 0897 0.1740 —0.0011 0.4537
H KRR Sampling seasons 0.3228 0.0001 0.0948 0. 1880 0.6047 0.0001

AR GF Hb 4 3R N [F] 221 (1 AMF ., A< BF 5% 2 46 0 %)
AMEF JF %1 204 122 #1163 OTUs., B & & T H
SRR R I Y AN [ 5| 4 45 31 A 45 1 X T g
Hlumina MiSeq I 7 A7 ¢ w55 09 W 5 TR B A0 7 A 3¢
K B TP 2 A 5 TR) R 1 3 B 8 A 2k 2 3 AR [l +
HhE S EFE N AME %,

H2 AMF £ 5 EMEHN R E S T EF Mk
M 2 B E AMF £ 5 B 2% 2 590 A
B 35 L IX AT B SRR B R A G BT A 1 0T G
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