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Comparative Expression of Two Function-known Transcription Genes
in Different Drought Tolerance Wheat Cultivars under
Water Deficit Stress

QIN Peng, LIU Bingyan, HAN Cuiying, LIU Hugqi"
(College of Life Science, Northwest A& F University, Yangling, Shaanxi 712100, China)

Abstract ;: This study aimed to investigate the expression of Wdreb2 and Wilip19 in ten different varieties of
wheat leaves under drought stress, and lay a foundation for wheat drought resistance mechanism. Primers
were designed according to gene sequences, using wheat leaves under different degrees of drought stress
(including 0,3,6,9,12 and 24 h) as experimental materials, and 26S rRNA as the internal control. The
florescent real-time quantitative PCR was used to detect relative expression levels of Wdreb2 and Wiip19 in
different varieties of wheat. RT-PCR results showed that, the expression of Wdreb2 and Wiipl9 gene in
drought sensitivity wheat leaf significantly lower than that in drought tolerant wheat under drought stress.
There are some differences in response time and express trends in different varieties. These results indica-
ted that the different expression levels of Wdreb2 and Wiip19 in different varieties of wheat under drought
stress were related to the drought resistant ability.

Key words: wheat; drought stress;transcription factor;real-time quantitative PCR

WKis BHI.2016-04-16; & w2 H #1.2016-11-15

E & AL R MBHE K2 22 AR B TR I 4 (01140302)

EERBN:-ZE M988—), B fE it Lo s A, FENF MY P F AW EP5E . E-mail: 77824518 @qq. com

R = (S U ;A R ol E = 70 e g ol I -0 YN - .7 7 1 -k SN N K7 SIS 710 e ) 1B 1 A 7 e | 1B L 02 R O

mail: liuhuqi@ yahoo. com. cn



2268 odt O % il 36 &

TEREXWEI XY - EEZRNRZ
—. HYHEZH T 2Man RN ESHiES T AL
45 DR AN oy 8 AR ok it b SRR At St
71 Ry 1 4 7 5 8 AT A0S — 2R 0 0 36 T A2
R SEDRI R IR L 7 AL RV MV VR 0 T R
P9 M ST T RN BGOAR 1 A A DT 25 6 i s A
YR a Az e ) . BLE A 2R EE T R A S
IR Y s R - B R B e B ok . TERU RS T (Ara-
bidopsis thaliana) W, B2 28 #id 50 M EEE /D
1 7004 g Aty 5 53 PR -7 %) 35 PR e o o ok 7, Hevp
A A — B4 5 5 aa R A AR S . bZ-
IP K% ) AREB/ABF % A A % 577 A= m o o
AP2/ERF $:[H % % 1) DREB1 W5 ik #% 5% T %
K A& % 5 NAC KR ANACO19, ANA-
CO55 F1 ANACO72 W+ 5 . m#h Al ABA 5 5%
R ORI R W AR R BT A R
SR R A AR R EEERT

HR 4 SCHR 4 B , DREDB 1 bZIP 3% 9 28 % s K 1
fEANEM TR EP I EEEE M. E
Hi BB ST 24 o, Wdreb2 Wi p19 8 IE 52 J2: BE % W]
WARE/NEPURAE SR 2 A AR E it
SYBR Green 44} SC B 78 PCR, /N2 B 26S
rRNA NS, & A X @ &8 07 2. A mRNA # 5¢
IKEE BRI Wdreb2 il Wiip19 3% 2 A FE K AE v
bt X UL 10 FiAS [6] 5 Bl /N 22 (5 b 5 R0
PELS BT R A2 M) 52 2 T B a5 T i Rk
225 IR R A R Bt 52 5 s N 7 /N A2 f R PL
R EIAE IR BE L 32— 25 S /N2 B AL R A 5T
B g LA

1B %

L1 EYHRSLE

HEPIBEREA 10 A AN 4 5 o F L4
BREYE P 979 PR 165, P A2 895 /ME 22, i &
18 T SR A2 1 42 4738 5 805 . 7k 9946 3% vk
143 %k 151,

KK B, BT 2R ORISR 2 R 5 H
10 U IREA BRI B 10 min, FFFHZEMKIE T T %
FESE RN ARER 2 2B A5 T 50 - I A
AR BB 5 12 he-24 b th 35 T A TR
FHI(32 C OO 12 RS, FENEAEKE 6~7
d SR 202 PEG 6000 B40LT LA  Of H 3 12
EOKAL X B TR AR B 0.3.6.9.12 F
24 h J X8 WA Bk A BE L PHCE U B — 70 C AR

e M.
1.2 REER55Y

HRIE Wdreb2(GenBank Zif 5 & AB193608) .
Wlip19(GenBank %#ic 5 Ky AB193552) H: P 7E NC-
Bl EANA B FEH, fli | Primer Premier 5. 0 344,
Gy T 2 MR S R, LS9 Wdreb2-F . (5~
AGATGTTGCTTCTTCCTTGCC-3") ;Wi p19-F. (5'-
CAGCCTCGTTTCTTCCACTTT-3")., F i 8l ¥
Wdreb2-R: (5'-GATGTGCTCCTTGAAATGCTTG -
3"); Wiipl9-R: (5-GACATGGTCGGTCGGGTTC-
3D, WS /N# 26S rRNA (GenBank % id 5 K
NC022710 FEH B )7 51, it 1 X R 51 4, L i
214 26SF. (5'-GAAGAAGGTCCCAAGGGTTC-3"),
FiEsI 9 268 R (5-TCTCCCTTTAACACCAACGG -
3. B MR IEH A A A L. E B E PCR
SE e AR KR BE L 1 R S B 2 s i PCR 3R kiR
JE .20 g/ L (R 3 AR 56 I o UK 45 8 5 10 B IE B
1.3 RNARBRSRER

K Trizol i 5] (TaKaRa A &), ¥ H Ui B
M7 B B O/ 22 4 A RNA L 288 i 40 ok
JCRE TR, 3158 ODaso /ODsgg « ODygy / ODys 5 B 5E
RNA {2l B, 7550 FH 3588 5E 15 i ko ks T RNA 1 58
M. PEEUER o R L 4l B HOWOAT B R RNA
7 cDNA & )% .cDNA %6 1 84 (% 8 PrimeScript
RT reagent Kit With gDNA Eraser(TaKaRa /7))
BT
1.4 PCR &4k

XFBE T H 0 5] 4 BGR JORBE 55~65 C L 51
WeE 0. 2~0. 6 mol/L. fE¥EL 30~35 45l it 175
il PCR &35, LIS 20438 7= 1y B e i VK 45 2R I A Al
TSRS T BB 2% T Y B A PCR &4
If e B 2% (R AT T — 25 1 SE R 28O i & PCR
g
1.5 ZRZEEEE PCR

K TaKaRa 2y il SYBR Premix EX Tag™
(Perfect Real Time) il &,10 pL AR B & 5
pL SYBR® Premix EX Tag™ . L F 5 # 4% 0. 2
pL (0.8 ul cDNA #EH 3. 8 uL KB ik,
CFX96 #1%5 PCR ¥ (Bio-Rad 2y &) #E17 » B A~
FESLE K 3 Y, PCR RN KA 2 £3£.95 CHi
A8M 5 min, 95 CA84E 10 s, Tm CiB k& K& Efif 30 s,
FEFR 35 U, A 1 B B B 5065 5 s IOV 45 RIS 65
C 5. 9FLL0.5 C/s B EET 2 95 C 17 % i ith
LW .



111 %

WG 85 <K A3 T30 AN TR L 5 P /N 22 R R B SR TR T 3R 5K

S5 2269

1.6 HIEHHH

SC G R FH S BT A2 B PCR A X &8 7 1k, vE B
278y P A 2 Kb B A AR O RD X BE AR B
H bR B iy A Rk &=

2 AR5

2.1 NEMHFE RNA REHRED

AN [7] Ak 35BS o] 0 AN 5] 5 /N 22 i A 1 6L
RNA 284 G i 55 b 43 560 B2 K I 38 W1, ODys0 /
OD,s ¥J7E 1. 8~2. 1, 0Dy, /ODys 7E 1. 9~2. 2, i,
W HL A RNA 4l B 85 5 5 28 728 1 3 iR W 056 e Pl 7K
KM AR 1, 45 20 40 5 RNA Y B BE Wi 3 435 . 4%
WA 5S.18S il 28S rRNA, H J& ™ & 7k B I % (K
D). UEHIIRBORE 5 B RNA C ] B MM 4, 52
RENS I SR R K R
2.2 Wdreb2 Wlip19 5 26S rRNA i R B R #&

TR W e v Dk A 25 2R (I 2) R, PCR 7
R A R — AR R g R A
M Wdreb2 Wiipl9 5 26S rRNA 5T H] F B kK

28S rRNA
18S rRNA

5S rRNA

B 1 /NFER R 2 RNA vk I 45
Fig. 1 Agarose gel analysis of total RNA of wheat leaves

351
O3h N6h BE9h HIi2h
30F
251
S
£ 20}
_.__<
RE 15
e
=2
TEof =
3 ..2
N & N
\ e N\ N
g [Nl 1D \
754979 PiAfe165 /ME22 JEZ18

4895

AN—F0, UL T AT DL 5 e R B, AT T
SE i E & PCR 2047,
2.3 Wdreb2 5 Wlip19 KX EM R RE
i

P RN AN Rk =22, L 26S rRNA N
WZSER ., LUK SR /NE A8 Wdreb2,
Wiipl19 B S RIN &R 1, 50 515 832 28]+
B 4 B 3.6,9.12 F1 24 h By M AH A
Wdreb2 ,Wiip19 Fe[F (55 th 2k (&1 3,14 4) .
2.3.1 Wdreb2 EARR/NEZ@mMAPHRIE HKK
X B AR LY o 5 A BUB R /N (PR AR 979, P 4R 165,
JME 22 A Z 18, 3 895) fEALFEAH v Wdreh2 K
R F A R e B s E B TRoE M,
Pk IR U Ay I 1A AR 73 R Hh AE 6 h ik, Horr,
AME 22 FEHTE 9 h b ACH Al 2 A SRR,

PCR

]

M 1 2 3

2000 bp

1 000 bp
750 bp
500 bp

200 bp
100 bp

M. DNA marker D2000;1. 26S rRNA;2. Wdreb2;3. Wiip19
E 2 Wdreb2 Wiipl9 NS HH 26S rRNA PCR
P17 0 TR AR S A P RS ) 4 2R
Fig.2 PCR amplification product of Wdreb2,
Wliip19 and reference gene 26S rRNA

M24h

o
Gz
%

Nl L N N :
a7 1= 5805 ko946 K143 K151

T 2B 5 FiDrought sensitive varieties

T 5 1ii} 2 7k & BiDrought tolerant varieties

B 3 10 F/NGE S P Wdreb2 JE R AH X 35 36 & 19 A8 4k

Fig. 3

Relative expression levels of Wdreb2 in leaves of ten wheat varieties
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