PEAL AL Y24 317 ,2016,36(12) . 2385— 2390
Acta Bot. Boreal. -Occident. Sin.

XEHS:1000-4025(2016)12-2385-06 doi: 10. 7606/j. issn. 1000-4025. 2016. 12. 2385

A 7 REMEREZBRE DNA BRiES o4
FHEB.E R EAY RALBE R BRE

GRS I EACF Asf Bh o2 . MTRIHT £ 453007)

R IE LAMEME SRRRAE Y DA R Rk R P R DN 4T U 2 B B AR X T R A A I TN o A S 25 R
itk DNA(nuclear plastid DNA,NUPTs) #EAT T 4F & A7, 45 R R U . (1) 4 B 8 44 38 SO L AR5 T 52
AN HEPEARS 1) 5 51 9 BE A0 A AF 63 ~297 bp Z 08, F i A 19 A~ 2% 58 51 8 F M G ok 5 5 51 (4 2 S Aol ~
Aol9) , H ik 86 77 81 5 47 A Mm-S 0 56 54 (4 AR RLE 28R F 84040, Aol9 5 47 A1 i S A4 36 B8 4 A B¢ S 10024,
()R H L 4 2 2 & PCR X 19 4~ NUPTs JF 30 PRI 22 F o B R WL B 4 5507 90 S e 1Y B 4 1) NUPTs J#
B, 4350 Aol Ao3,Aol0 Fl Aol8, (3)JFF Lt B, 8 B A% 5L 20 (19 NUPTs 3 22 5 T IS A B IR 41 1 )2
I 5 42 X (AL f TRa A IRb X0, 156 W 7 3 A St Uk 35 TR 2 o 52 X 90 T 25 0 1) A 3 TR AL 04 7 5 A A e 2 i 17 114
NUPTs J331 ,

KB A MM ZE S AL TR DNA ;P i 17

RESES: Q789 XERARARRD A

Cloning and Analysis of Male-biased Nuclear Integrants
of Plastid DNA from Asparagus of ficinalis
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Abstract: In this study, male-biased NUPTs (nuclear integrants of plastid DNA) were isolated and ana-
lyzed in the genome of Asparagusof ficinalis, a dioecious plant, by using genome substractive hybridiza-
tion method. (1) 52 male-biased sequences with size ranged from 63 bp to 297 bp were obtained from the
substractive hybridization library. Among these sequences, 19 were originated from chloroplast genome,
which were designated as Aol —A019. These sequences all showed high similarity (=>84%) with the cor-
responding sequences in asparagus chloroplast genome, while Aol9 showed 100% similarity with the cor-
responding sequence in the asparagus chloroplast genome. (2) Genome semi-quantitative PCR revealed
that four (Aol, Ao3, AolO, and Aol8) out the 19 sequences were stable male-biased NUPTs. (3) Se-
quence alignment showed the NUPTs were mainly derived from the inverted repeat region (IR) (containing
IRa and IRb) of the asparagus chloroplast genome, indicating that the sequences of IR region of chloroplast
genome were more preferred to transfer to nuclear genome to form male-biased NUPTs sequences.
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Table 1 Summary of the primers used in this study

A . ke
rimer Sequence(5'—>3") nnealing
name =¢q * temperature/ C

Aol TCTCCCCGTTCCGTCA 55

CGGGGGAAAAATAGAGA o
Ao3 GCATATAGATACAAATGG 50
: CTACTTGAAAAAGGCTC :
Aol0 GGCATGTACAGAATGAA 52
TCAGAAGAAGAATTAGGC

Aols ACAACTTCTTCTCTCGG 52
AAGAACAAAGATGAAAAGG

188 GGCAACGGATATCTCGGCTCTC 55

TGACGCCCAGGCAGACGTGC




12 4] 20 L A5 A AR O 1) B B A DNA B SERE 5 53 A7 2387

R 5 e A5 7 9 52 3t 51 i AT 5 R A R e i
Mrs XTS5 3 /> MM DNA BEAR Fil 3 4~ I
DNA it . DL 18S KN Z., ¥ Bk R 25 pl. 43
BIAARE A DNA (5B B 30 ng/pl) 1.0 pL.10
X PCR Buffer 2.5 yL,dNTP Mixture 1.5 L, 5%
(10 pmol/1)%% 0.5 pL.Taq i 0.1 uL, PCR i
ZF:94 CHIZASPE 2 min; 94 CA8ME 30 s, A[]IB k
JE T 1 min,72 CHEMH 1 min, 30 NEH;72 CIE
1 10 min, PCR =4 F 2. 5% B N8 I 5 e o vk
i
1.2.5 MAERFINERAEIEHESF  FH
ARSI 2 K A7 A 3 A I B s L 92 ] bow-
tie2 B X T A5 MR f ) NUPTs i 47 48 D14
it
1.2.6 512 8 NUPTs 7 51 19 I 4% 4 B B 48 % fiI
K H DNAMAN # 4B x5 22 5 NUPTSs J3 51 Fil
A AR LRARFE P 2 347 7 51 E X, DL A xS
S 25 NUPTs J5 41 76 41 - 40 it 2 0k 55 5 20 1
A7t B SR Y5 T I g A R DR A g L AR DX

2 RS0

2.1 AZMEEREES DNA BBYI R HERE

A AMMEPER 4 DNA 78 100 pL KR T .4
it Mbo TTg) 9 h Uk 45 R R B, Jg U1 7 ) 52 0 34
SIHRHECIR (B 1. A . U B i U0 38R B4, mT L A
Tester DNA, MEPEFE 41 DNA 283 /K i 4b 2 60
min, Bk 4558 R . DNA 6 R B 2 8 S8k B A
B K/INTE 250~1 000 bp 2 [A], 2545 4 i 7F 500

M 51 82

2 000 bp
1000 bp

750 bp
500 bp

250 bp

A

bp 24 (K 1,B) ik FH % driver DNA fZEK
2.2 MEEEFEE DNA BB X ERERIFE

Ab PR E B ETE DNA 5% DNA V428 )5
W 5 0 2% A S D) Al Ak A RS i pUCT19 344 3%
A KIGATH E. coli DHS5a 852 25 41 i L 1
EGAEENEEEMN LB R ETR ik, 4t
A3 6 600 AN FHMEERE. @ A5 M13 #E17
PCR " #4, 3k 18 2 600 A~ B K JEAE 120 bp KU I
() B — i [, i BER/INE 100~450 bp Z A (] 2)
2.3 PHMERMEMBERZER

R Tk — 20 B BT R4S PH M v R 0 1 B R
MK 452 AT B s B R PCR 436 7= ) B 7E 2
Jo B E 43 ) P M R PR 4 DNA S #8 BF #E 47 B 45
438, HARAG 98 AN e 5 BH P v e G 23 25 2R D
B3O ST . W 45 R A H DNAMAN $4F 2%
HEAR G T 5 AR TS /NF 60 bp 19751
RSB 52 &7 4. Hob, K76 R B E 297
bp. e 7 5 B B 63 bp, 7E 52 5 22 7T 4
H,33 5 A AR ISR AR T 8, 19 4507 41 2 i S ik
KR EH 4 H Aol ~Aol9, Fif Il NUPTs J§
G A7 AR S A R 4] S A APE 7R 84 %0 LA L.
2.4 NUPTs W75 & 581F

h T L RAE BT RS ) NUPTSs J& 75 2 fa
B 1 22 5 7 B, R 3 IR A 2 o ' PCR OB AR X
19 4~ NUPTs #4743 01 . &5 & B, Hod 4 45 4
(Aol,A03.A0l0,Aol8) 2 #5 Ay K 5E 1) Mk M i 1) P
B (FE 1),

2000 bp

1000 bp
750 bp
500 bp

250 bp

B

M. Trans2K marker; A. 1 1 2 J9EEE) 5 A9 A A MUEPE I 20 DNAGB. 1 F 2 S 5 iR 0 5 09 10 3 A k1 55 K 41 DNA
Bl 1 A AR R 2 DNA B (A K MM DNA B #F (B) LIk K

M. Trans2K marker; A. 1 and 2 represent the genomic DNA of male asparagus after enzyme digestion;

B. 1 and 2 represent the genomic DNA of female asparagus after high temperature boiling

Fig. 1 The electrophorogram of enzyme digested male genomic DNA (A) and high temperature broken female

genomic DNA (B) of asparagus
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M 2 Trans 2K marker. 1~96 K HL Bk K 1 7%
KBl 2 #amEAFR A PCR #2455 (DL M13R il M13F 514D
M indicates Trans 2K marker;1—96 represent randomly selected colonies
Fig. 2 Partial results of PCR amplification for screening the positive recombinant clones (M13R and

MI13F as the primers)

A, i A ARSI 20 DNA SREF 24385 B. sl 5 A HOMEPE 56 D 41 DNA SBREF 22 58 5 87 5k BT 7% Ay e 1 e D) 200 o o 28 g R 10 s e
3 A3 U 2 3T T M 7 ) I B A 2 3R
A. The results of clones hybridized with asparagus male genomic DNA probe; B. The results of clones hybridized with
asparagus female genomic DNA probe; Arrows represent the clones with preference in male asparagus genome

Fig. 3 Dot blot hybridization of the clones screened by substractive hybridization (only partial results were shown)
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A~ 6 Sy AR SRR S R 4 DNA
B4 BENA Y E R PCR 9748 45
M. Trans2K marker;1—3 represent the genomic
DNA of female asparagus individuals;4—6 represent the
genomic DNA of male asparagus individuals
Fig. 4 Genomic semi-quantitative PCR

amplification results
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Table 2 Copy number estimation of the four male-biased

NUPTSs based on high-throughput sequencing data

A AMEKEY Ao-genome

Total copies Copies/1C
Aol 16 258 2514
Ao3 9675 1 505
Aol0 9572 1477
Aol8 97 15
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