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Abstract; The reactive oxygen metabolism under different salt levels and the alleviative effects of exogenous
abscisic acid (ABA) on plants against salt stress were assessed in Platycladus orientalis seedlings treated
with different concentrations of NaCl and ABA. P. orientalis seedlings were cultured by 1/4 Hoagland so-
lution with different levels of NaCl (100, 200, 300 and 400 mmol « L™ '), and 1/4 Hoagland solution was
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used as control. Furthermore, seedlings exposed to 300 ymol « L' NaCl were treated with different con-
centrations(0, 0.5, 1, 10, 100 and 200 pmol « L™') of ABA, and physiological indexes and expression
levels of genes related to reactive oxygen metabolism were studied. The results showed that: (1) With the
increase of NaCl level, the contents of hydrogen peroxide (H,0,), malondialdehyde (MDA), glutathione
(GSH) and proline and activities of antioxidant enzymes (SOD, POD, CAT) in P. orientalis leaves in-
creased, while soluble protein content decreased. (2) Salinity-treated plants exposed to ABA at 1 and 10
pmol « L7" for 48 h significantly enhanced the activities of SOD, POD and CAT, and increased the con-
tents of GSH, proline and soluble protein, accompanied by decreased accumulation of H, O, and MDA. (3)
NaCl stress caused the variation of the expression levels of genes related to reactive oxygen metabolism in
P. orientalis, and the presence of 10 pmol « L ' ABA maximally induced expression levels of Cu/Zn-
SOD, CAT, GR, APX, MDAR and GST genes in 300mmol « L' NaCl-treated seedlings. These results
suggested that exogenous ABA could promote antioxidant enzyme activities, increase osmotic adjustment
ability and GSH content, decrease the accumulation of MDA and H, O, in leaves of P. orientalis under salt

stress, thereby effectively reduce the damage of reactive oxygen species to P. orientalis leaves and enhance

its salt resistance.
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Fig.1 Effects of NaCl stress on MDA and H, O,

contents in leaves of P. orientalis
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Table 1 The primers of genes related to reactive oxygen metabolism used for gqRT-PCR in this study
M Gene H: K 4 Fr Gene name 2|4 Primer sequence (5'—>3")

Cu/Zn-SOD-F
Cu/Zn-SOD-R

Cu-Zn 8 4 {b. ) 167 Al

gﬁg::l}; ot E AL & il Catalase
APX-F BUIR i % i 4 AL Y T
APX-R L-ascorbate peroxidase
gg:g A e H KR 5 Glutathione reductase
MDAR-F B LI 10 PR i
MDAR-R Monodehydroascorbate reductase
GST-F AW H Ik ST 7o i
GST-R Glutathionine S-transferase

Superoxide dismutase, Cu-Zn family

TTGAGGGCGTTGTGAGTCTC
ACCTGTTGACATGCACCCAT
TTGTGAAACGTTGGGTGGGA
CTTCTGGCCGAGGGATTTGT
GGGCTAACAGTGGCTTGGAT
ACCTCAACAGCCACAACTCC
TTGGAGCAGTGGGAGTTGAC
GTTACATCACCGACTGCCCA
TGGGGAGCTTGCCATCATTT
TGGAAACCTGGTAGTCGTGC
TTTTGGCCTTGCAACCCTTT
GACAAGTCCCCTTTTCCCCA
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protein contents in leaves of P. orientalis
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Fig. 6 Effects of ABA on proline and soluble protein contents in leaves of P. orientalis under NaCl stress
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P TR R T A AR AR 5 3K ) (Cu/ Zn
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HE— 18 0 i A L B SOD, POD 1 CAT 3% 7%, H
SNt 10 pmol « L™ ABA i fi KR B 1175 5 3 46 3%
PR f) 28 38 o 2F I 184 3 A A 09 it 2 . Nounjan 25
& 10 B 38 AR K AF it R Cu/ZnSOD . MaSOD
APX Fl CAT FeR % 5t KV B OsAPXS8 B &
TR K388 B 6 NaCl B g w2 5 75 mmol « L
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L' NaCl e B 35 it i 538 PhaGRC 2
Tk BT RS IR 5 UL E RS .
U B NaCl R P38 B0k 1 A bt A AL g
TP 33X AT RE 5 05 1k S A R B ARG e T
T M ST R AR OC B SR R B Sk K PP, Zhang
SFUSARNCE B T Rt — R R T =
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BSOS H ABA b Bt BEVE S X BEIL N KGR
HMIE ABA AT LA R0 B2 5 16 M SRR T R R AT
PE o R A S0 FR 52 R 240 L R o o AR A R B L DR A
11 5 4 1 AT 28 fige o v R S | S R A 8 0
GSH il i AsA-GSH 13 H#3E BRI P ROS. J8 4%
AR XA 0 o AR S v R Tl AR E T A
Fro GSH & 5 148 o 1 BE & £ v 5 1 it 38 5
M 1A 10 pmol « L0 ABA A 5 35 52 5 M A
t GSH & & . 4 = Hht A ALse 1

NaCl &b B A7 R0 KR R e i nk | vh
H, O, Fl MDA & 558, 5 3500 g 5T A2 2238 .
TEA S G vh 3 W30 Zb 38 48 b i S0 AA 4 T A
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TET RT3 P AR B RE T B AR SRl R AR i 4R Ak
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