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Abstract: As one of the key parameters of seed quality, seed longevity is directly related to seed germina-
tion, the growth and development of young seedlings, and finally the crop yield. Seed longevity is a com-
plex biological process which regulated by numerous exogenous and endogenous factors, such as structure,
nutrient composition and related key genes. Investigating the changes of physiological and biochemical in-
dices, biological function of the related genes during seed storage process to reduce the energy consumption
of seed, is great significant to further extend the longevity of seed. In this review paper, we summarized
the physiological and molecular mechanisms, related key genes which have dominant roles on the changing
of seed longevity. Furthermore, the regulation mechanisms of various external indices on seed longevity
are discussed. Finally, we discussed probable research directions in the future.
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ROS RLE )12 A N J2& 5% W F 1 77 i (1 8 22
HE,AEWMFAEASARBIRENZEGEIR. T FM
851 B W38 T 3 N BR 5LORF 3% S B Hb A
ROSH73 0 ROS R85 i I 18 45 9 Bt & A g, 3
FOEH A9 A A bt B2 R A AR e . K KRR g
PR 1 5 B 5 v L U AR RIS i R I 7 % 7 T2
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ToORBE RS, X R LIGL X Fp T 75 i JE % &
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M. BREA RPN DNA 4545 7 B, IF 0% PARP
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cleotide, NAD™ ) iy JIE 97 » 44 Ak A= Bl 0 ik e (nico-
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REAR 7 air i B . BFSE 3R WL AR AR ST b 1 b NIC-2
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AWFFER] AU I A 5 4 R B H (metal-
lothioneins, MTs) [ 15 K V-2 38 £ &5 T Fp X Jin 8
AL AP Caccelerated aging, AA) By 52 14 . X 2 b
EH I MTs 7 B 42 &5 . NaMT2a,
NnMT2b il NaMT 3 15 3% 5 B MU A i 72 i
FKCERL, BERE T RN TR E S
JES UM Y AR B T AZ e ) . 40 R ST
T NuMT2a il NaMT3 53 4 48 15 0 i 7 52 2 &b
A B A HRBTAE L R BT B AT A7 75 A 53 )
AL EAER] . #E— LR R, NaMT2a
NuMT 3 B %% e I AUL B 51 7~ 76 S84 B (NaCl A
H 5 i (methyl viologen. MV) i} T 898 & K L
HPAERA TR FE &, AT WL, NaMT2a #1 NaMT 3
f i ek 4R & T 4R O A T e AL R R AR
S SERNNY R S
4.4 PIMT E R F 5 pI%Mm

T RA R W 5 B B (protein-L-isoaspartate
methyltransferase, PIMT) ¥ 7 76 T ir A 4 ¥ &
Gerh il E G A WA DL R S RN A A
O XA WA R R T R 2 B b
PIMT {47 gh A BR T 7~ b, 158 B 3 b g X% b 176
TIHORFE R T L 0 P T R A IR
FAFTE » 2338 WG AR 1 ST A (0 2 11 0 285 4 A 0
MR AL S BOR TR I TR R A IR
S B ICHE 1 HLth B &0 B S B A LI
Horh— 03 5 H & R 9B i S A1 i A N 1) A
I XA 02 T LA A S Y PIMT W] LA AL 5%
SESER) L-R A /R A IE W AR PRI RERY
L-RAZMR ., 76T 1 A 0 U B o7 5 b, PIMT
MR EORIE T PIMTL B %5, BlM T
W ArPIMT J& DX 1 77 i A7 T 2809 IR 4% 4 1
# AtPIMTL K205 i 57 K 4 2R (iso-Asp)
(1 SR RH B Ak T AR A K 7 Bl 0 T B
AtPIMT1 RikAb THEARAY K F L iso-Asp 7Y R P
AR B b Tt o b 7 2R 43 R0 H 658 8 A BB b 38 S5
T R SRR A SR R
4.5 $UETT SRIT B E 337 F 7 a5 B9 % )

SIRTI1 (sirtuin type D) J& T NAD" Z MM 1
L B ST AL I . e 200 AR 0 S A I 3R
HATZMEM . BRIFF 7 SIRT1 B 3£
IR — RCE A i T 2 LGB R Al i b, O L R IR
I 52 PR A5 PR 2R A5 0 9] G0 O BR 2R TR B R Gk K P
R TRE AT M T AR (Col-0), H T

DNA i A 5 78 {4 Fb - B S o A< 51 P AR K 5
E %, 403 B %) i o 2 10 5 0 HG e R GRS AR L
T B SORRAG R B AR . Bt R
ISR RE T OB R LA i R E RS
I S AR R B T IS R e R IR (A SR
TRE. UL ArSIRTL KK 5 fg & (% F I K AR K
ARSI AR LA B O 2CORBL R T E— 2
iff 5%
4.6 DT EBE X7 F % a5 B9 22 0

st 7K it P (desiceation tolerance, DT) 7E Ff T fif
A7k B, S 5 e R B Y G HE R . DT #IA
J GO E S T IR S A A G TR R e R e
4 H (late embriogenesis abundant protein, LEA) .
W JFORE I (HSPY fns f i & @7 &
S0 ) 00 T Il DR R ik B A B e R e A
1 24 i B ot T M i Ry SRR O LB O K
PR AT 0 BT & B K T e e R R
Jii V% R CABA (1) &b R LA AK 52 JHE 8 7K if 00,
Tk % PA] e ] 3 19 £ 4 A B o A R0 w7 X
(early response, ER) Fll i 3] i L7 [X 4 (late re-
sponse, LR)A 2 M H,ER KEAHK S DT
O ARAT R AR 155 080K LA K 4t 1 Je% g
TRAPBLHIA G, I LEAS LR X0 i P 3 B4R i 15
N T3 2% A0 R R N A R A . T 5w AR A
(DREB2A.XERO1) .LEA 3K 1 ABA i 3% K
(EM1.GEA6 .RAB18 .LTI65.RD29B) i, I DT
FERE W . Hod  fE KA dreb2a ', DREB2A 1
o B AL B X T B e A i A2 1 1 (8] i
DREB2A X} 7K 43175 T 1k DA 8 5 /E I

AT3G53040 4ty LEA & 1. HA ML o 1R
BEFFE , B9 A LEA-4 LK 3Rk 5 ABA %
VI G s ATAG25580 i fith — F i 38 e 137 1) 2 14 5T
H 5T 5% i CAP160 & (2. 78958
t, CAP160 8 H ot 2477 T Joi b . 72 T R ik ia
T 5 A DG IR L AR OME A N A B 2R 0T R i R e M
S X SR AF AR AL Ay AT W, AR A (ar3g53040
I ardg25580) & DT 4 68 J1 AH b T BF 4= AL &
FREEY

A W9 IEBH , ABI3 (abscisic acid insensitive 3)
XF 4R ST B R R N A A U7 Ik AR
FA . ABI3 R R AR FlF & & R ) 5 25 St
Al T (transcription factors, TF), fl ABA —# % 5
AT IR RGE  [Waf, ABI3 X R F IR B
PAKCH KA AR AR Y . R R B A A i R
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SRR o C | P A U E S SR LR E R 2
by i AR 75 A [ ABIS 3 ik i 7 f) 3 B
PET RN R S R R KR . R
HEWT ABI3 HA Mk 7 (38 % X5 7 i b1 o 5 b
0 M S AH G Y B R AT IE Y. AR R, K
FLR 5% K EEBEZE H 18 (Medicago truncatula)
Fift 7~ b AT U L RABAK wrky3 Fl nfaell 8 3 X F7
AT A DR e S IR 1 S ) BRI TR A R L O A SR
KAV 45T R F . i WRKY3 I
NFXL1 A ANl abi3 58 48 1K Kk A5 72 Ak ik W]
ABI3 g 257 F WRKY3 5 NFXL1 @ %, 3t
X A A HEAEH
4.7 RPBEENMFEGHEZIN

PR 72 1 HSFA9 (heat shock factor A9) %%
SR TTE R SE B /NP T2 8 1 (small heat shock pro-
tein, sHSP) L [H , I i 8 45 Ff 7 H a0 . FEAE Y
i sHSP 1l HSP101 5 fp T # P AH OCH . 4l
IR AR K B, HSFA9 3Rk 32 5 sk N 71
ABI3 45, HSFA9 1E AR 7 i 7 R A 0, i
T HSP101 il sHSP P fft 8 (B9 LR L X6 3265 A1 iR
JR B F B (LEAD WA S (BRI hs-
fa9 T HSP101 F 2K F K B, Fl 7 i $4 P 5%
IS Bl 3 i 4 R ) T B ik DR R R T
i, HeHSFA9 5—/~ A B BH 8 g 71 1) SRDX 45

Ao ds10 Ja sh R il 50 AT R N T
LA 3R % L, hahsfa9-srdx il HSFA9 B[R &
ikl BOK T B (sHSP) B9 B 8K e ik 2>,
hahsfa9-srdx Fh T H B E 45 % . & HSFA9
SO hahs fa9-srdx 5E728 AR Tl 1 73 iy o AH 2 H AR AF
K& TR IR R & E B S 0 R OF A R AR
1k HEWr HSFA9 HUE 8504 B T R (04 B K it 7
MR A,
4.8 LOX3ERATHFHEMD

Mg 4.4 i (Lipoxygenase, LOX)#{k FUFA &
B Wi R 1 A ik A8 Ak . XA BILAR P A T R AE
RS R ) F - 55 i RN T 06 55T KRS
Al Ff DawDam 5 8h 5, i1 T4 LOX3 B A, R B
Tt i 7 10 R S 0 — 2 B LOX 3 ] 5 Fh 1 1Y
Fen BEAHK . Xu 85k — DR S 45 18 %5 i
KREHEAT T LOX3 Jz LI Ab 21, iR 3L LOX3
FE DR AR 32 B B B AR 15915 K AR K 15
91 5 Hp A AP (W ZEAH R 5504 F 2E 17 A 2Rk 24k
AFR, AR e LR R T WT 28— B A2 4k
PSR R ZFRAFAE R TE 18 D HJF 1091 K
FREERT W, H RT-PCR & & 43 ¥ J5 ik 52
WT ft LOX3 B8 SR B35 8T 05917
T LOX3 R 7R h w2 I,

®1 MHFEGEXHEERBEINGE

Table 1 List of genes that are involved in seed longevity
HH 4 EHEFF S FEA Y)Y Re A 22 3Rk
Gene name Gene 1D Main biological function description Reference
- , 4if% DNA B2 [ A& 5 5 R J1 % 2300 DNA FLEE T BUEE (1 B )7 Encoding DNA lig-
LIG4/LIGS AT5G57160/ o . -t ) -
LIG4/LIGH . ase, repairing DNA single— stranded and double-stranded damage caused by environmen- [42-43]
ATI1G66730
tal stresses
i % AR T PG 7 B3I NAD S, (8 00 1k Jre 1) £ 388 Ak T 1E % 19 7K F Encoding nicotinam-
NIC2 AT5G23230 ide enzymes, reducing NAD' cumulative and make nicotinamide metabolism at [47]
normal level
RIGPRX/  LOC4344045/ %t e 2 B2 iok 401k ) 3 s ity , KA 375 14 S0 %) i+ 19 01k Encoding cysteine peroxide re- [567 [60]
NnPER1 AT1G48130 ductase, resisting oxidation of reactive oxygen species in seeds °
AT3G09390/ A EBEAEE  ME N 48 B F B &R, 158 Fh 7 19§13 55 68 J1 Producing metallo- .
/ / =] Gl 5 5
MT2a/MT3 AT3G15353 thionein, as chelate metal ions, thereby enhanced the seeds of adversity resistance ability [561062] [65]
PIMT1 AT3G48330 I H 5 R A S B W 3L 1 Encoding proteins of aspartic acid methyltransferase 1 [67-69]
SIRTI AT5G04590  SRER A/ A1 F FI A 5 Related to energy metabolism and utilization [74]
ABI3 AT3G24650 ﬁ?ﬁi%@ﬂ*ﬁ*#}ﬁ%ﬂﬁ%%?,{%}ﬁ T‘:}ﬁéﬂ’ﬁﬁl? An important transcription factor [77]
to protect the dry seeds during seed maturation
DREB2A AT5G05410 + 5L )3 45 4 %5 11 Drought response binding protein [81]
— AT3G53040 4t LEA 2 A AL T 524F Encoding LEA proteins and resisting drought stress [82]
HSFA9 AT5G54070 5484k 8 A & Related to cope with oxidative stress [85]
NFXLI ATIG10170 1445 5 M W) B3 e A 56 K5 X B9 %2 35 Regulation of expression of genes related to plant [89]
: stresses resistance
HSP101 AT1G74310 i K 522K 1 Encodingheat shock protein [94]
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