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Effect of Alternative Respiratory Pathway on Chlorophyll Content and
Chlorophyll Fluorescence Characteristics under NaCl Stress

LU Lina, XIE Jiajia, WANG Qingwen, SHI Dailong, JIA Lingyun, FENG Hanqing”

(College of Life Sciences, Northwest Normal University, Lanzhou 730070, China)

Abstract: By using the leaves of bean seedling, we studied the effects of alternative respiratory pathway on
the chlorophyll content and the chlorophyll fluorescence characteristics under NaCl stress, to investigate
the physiological effects of altemative respiratory pathways under stress and the regulation of photosystem
I (PSII) in plants under salt stress. The results showed that: (1) the treatment of NaCl with increased
concentration (0, 100,200,300 mmol/L.) caused significant decrease of the chlorophyll content in bean
seedling leaves. The ratio of Fv/Fm (the potential maximal photochemical efficiency of PS ), F,'/F..’
(the maximum quantum efficiency of PS|[l photochemistry at illumination), Y([[ ) (effective photochemi-
cal quantum yield of PS]I photosynthetic), and qP (photochemical quenching coefficient). However, the
levels of NPQ (non-photochemical quenching) were significantly decreased. Meanwhile, the capacity of
the alternative respiratory pathway was increased significantly. (2) The NaCl-stressed leaves, which were
pretreated with salicylhydroxamic acid (the specific inhibitor of the alternative respiratory pathway,
SHAM), exhibited lower levels of chlorophyll content, F,/F.., F.'/F.", Y(II) and qP, but higher levels
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of NPQ than the leaves subjected to NaCl stress alone. These results suggested that NaCl stress can cause

a decrease of the photochemical efficiency of photosystem [[ and an increase in dissipation of light energy

in the bean leaves, and the alternate respiration pathway could play a role in alleviating the decreas of chlo-

rophyll content and photochemical efficiency of photosystem [[ (PS][ ) under NaCl stress.

Key words: bean seedlings; alternative respiration; content of chlorophyll; chlorophyll fluorescence; NaCl stress
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The same as below
Fig.1 The change of chlorophyll content in leaves of
bean seedlings under treatment with the different

NaCl concentrations
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Fig. 2 The chlorophyll fluorescence characteristics

of bean leaves under NaCl stress
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— P RRAR DA B LA I 2R B 1 O RE A8 20 19 1L
Bt — 25

3w

NaCl 361 23 52 W i 3 (4 11 A4 BRAILBE - DT 51 i
AR AN A KA T R EE B AR ST i
JeFR G (PS ) A B 5L e T o6& LA 2 21 45 1
9 AL 5 22— s BN R 8 06 B 1 FH o 87 20 45 4 2
36 ol 25 O AR T . A F ST R, NaCl i
i 2sil s PS4 2 DL i 1 s AR 1 Ty
g s Z Moy 20, S 80 R R R R SR g
(LS RER IR E=R A R RN TEAN R Ble (N D)
TR, WA RS R . NaCl i #3% 7 PST Y
AL MR A YR ThRe e 1w PSR R o2
b HL 9 £ 88 32 BHL L, AT 5 3O T AT O A Y
HL P b DL T U A R DG RE S L L & PSTT
XF G RE Y I 3 R Bl AF 5 & B, NaCl i
HBHAF PS I J5 A0 H - DB W) 5 52 4R TR A
(QA) 1] IR TR B(QB) %3, S 8 T RN BB IE
WAL FEA 5T . NaCl i 8 5 80k 7ot
Fi s R 9 6B 8 F,/F,.F,"/F," .Yl ).qP &
EFFBOIFSHT NPQ B3 LI, B NaCl Wrif
LRGN R PS5 R X6 B8 1 0 iz
PR B A H PS T #2532 W 7 FA% 336 WL 1 1 fi
F1°F B 5 BOE 2 (0968 TR BRI T 6RO DA A
(9T CRE IR Y LU ] 5 25 PE RS . R, NaCl a8
WERRAR T OE RS 1T XGRR M H R .

[l SR R IR A O G R B IR R
Bt FIIRE . E S BN LS R 2 HEEE
WA /R B 3 555 . A B 58 R W, NaCl a8 {6
T S AR ol 25 A0 IO & LA R R 1) 50 o R o S o
Bl T EEEAL G R TIRE, Rl 2k R s
PRI W o 0 S R A R, S B R B R R
IO DT B W I Sk A B & ORI B R A AR R
JEHE R W RN 4 e . WA BIFSE & BE L NaCl i 51 5&
R 5-G ER (ALA) B9 4 BURT R 45 2 o
RS SR ALA &8 TR R T L
ALA 6 BT AR 0 2 2 00 G . N5 80 PS T
Xt ERER FH R A BRI . ZEAR SR b, B NaCl
e e B B T R R R S R R N . HIL,
NaCl 61 fT i A f8 i 4 28 9 96 2 5000 78 Ak T g
Sk Z RN T RA X,

TAN AEARWE S T R B B A NaCl a6 ik B 1Y
B R A A R, AR



1180 oodb M

L7/ 37 %

B 7 R G T 0 i S v R AR S 2 S EUR P
Jroe A v A% o B Y A B2 A DRI 4 ) AR R A A
T A IR A B R R T B A I R A A
MIREAR 2 51k PS I A2 Al 4 3 2 3 )5, NADPH/
NADP # H A58 0. 5 BB & e 5% 19 9 /0 . [ 1F A
VAU S N S 1 T S S N D NI R U B
AN HEAR I v, b BROR LG i 32 I
R SHAM JfR 51 3 G 1 it 2 R PO S
BOKF-#9 2 25 AR A L SR W AR AR I 30 46 18 T 5255 0
Ml 3k A58 R A0 3 5 AN 2 52 MR SR L A PS L6 5
55 NaCl 38 40 L . 78 NaCl B0 2 fi i fin 52 2
0% g 4 ) ¥ SHAM, 3¢ 52 (¥ Fo/Fo . F)'/
F," YD) \qP K3k — 28 5 3 F B NPQ /K F- Ul
HE— A 8 3 BT a3 3 W 5 R Ik A A 4 4 e
T NaCl XJ PSII GG At 51 b 1 400 ) 7 3 ) T

S % Uk -

[1] MUNNS R, TESTER M. Mechanisms of salinity tolerance
[J]. Annual Review of Plant Biology, 2008, 59 (1),
651-681.

[2] GADALLAH MAA. Effects of proline and glycinebetaine on
Vicia Faba responses to salt stress[J]. Biologia Plantarum .
1999, 42(2) . 249-57.

[3] UNGAR IA. Salt tolerance of a coastal salt marsh grass[J].
Communications in Soil Science and Plant Analysis, 2003, 34
(17-18): 2 595-2 605.

[4] LUC, QIUN, LU Q. etal. Does salt stress lead to increased
susceptibility of photosystem [[ to photoinhibition and chan-
ges in photosynthetic pigment composition in halophyte Suae-
da salsa, grown outdoors[J]. Plant Science, 2002, 163(5) ;
1 063-1 068.

[5] HAMADA A, SHONO M, XIA T, et al. Tsolation and char-
acterization of a Nat /H™ antiporter gene from the halophyte
Atriplex gmelimi[J]. Plant Molecular Biology. 2001, 46
(1) 35-42.

(6] XUSDE. Bk, SITHE .4, S0 W0 X0 H8 Bl & M 4h i 2 K
B2 [T, VLIRAOk R, 2010, (5) ¢ 124-125.

LIU J G, XIAOSH., WU Q. etal. Effects of salt stress on
cotton seed germination and seedling growth[J]. Jiangsu Ag-
ricultural Science, 2010, (5): 124-125.

[7] MUNNS R, JAMES RA. LAUCHLI A. Approaches to in-
creasing the salt tolerance of wheat and other cereals[]].
Journal of Experimental Botany, 2006, 57(5): 1 025-1 043.

[8] MWeE. WIA, B IR, 55 W xhEh 030 09 52 N B Kb #h
MLERWF ST BE LT ). Il R ARl R % 2 4 CH SR BH 22 B0 » 2006,
37(2) . 302-305.

YANG X H, JIANG W J, WEI M, etal. Review on plant re-

W20 5 T M Z2 (A FE . k. £ NaCl i if
SN SRR AR B T RO RS 1A
B E YR RS W IE R 1B17 .

HOBTIE 58 B e OG5 T S8 P I A A RE 8
TSR G W A ST WL K W] AE NaCl B
10 SRR I g A B A ) S BT AR R S Ak —
AR B R W] NaCl 3 T 228 09 1 i 42 o B8 0 Ik
AR R . H L. B B RO RS
FIRY 5 W) SR P R 3k A48 AR T R T8 A O T I SR R
WA BT NaCl i RO RS I isfy.

Zi LPriR . NaCl Bt @B TR B RO RS
AR TR B R S 3R A G s A L T A2
W g A2 Al LLZE it NaCl Bhia ot R 48 1 et e 2%
1 e A S 2 A e

sponse and resistance mechanism to salt stress[J]. Jowrnalof
Shandong Agricultural University(Natural Science Edition) ,
2006, 37(2) . 302-305.

[91 2= ., skaeMs, 0 B9.5F. 040 Wt A W 19 % m Kl

it AL B WF 57 2F R [T 1. o [ A % 5@ 4. 2008, 24 (1)
258-265.
L1Y, ZHANG Y P, SUN M, et al. Research advance in the
effects of salt stress on plant and the mechanism of plant re-
sistance[ J]. Chinese Agricultural Science Bulletin, 2008, 24
(1): 258- 265.

[10] XZEse, KA, sRILHE. £ Bhia 4 AR [\ Bi ko /0 22 o fy ok
JFEF B ST MY FE R, 1998, 15(2): 46-49.
LIUJ Y, YI Y J, ZHANG Q D. Effects of salt stress on
chlorophyll a flourescence induction kinetics in wheat leaves
with different salt tolerance[ J]. Chinese Bulletin of Botany ,
1998, 15(2) . 46-49.

[11] RAO G G, RAO G R. Pigment composition and chlorophyl-
lase activity in pigeon pea (Cajanus indicus Spreng) and Gin-
gelley (Sesamum indicum 1) under NaCl salinity[J]. Indian
Journal of Experimental Biology. 1981, 19 768-770.

[12] MASLENKOVA L T, ZANEV Y, POPOVA L P. Adapta-
tion to salinity as monitored by PS ]| oxygen evolvingreac-
tions in barley thylakoids[J]. Plant Physiology, 1993, 142
(5): 629-634.

[13] VANLERBERGHE G C, MCINTOSH L. Alternative Oxi-
dase: from gene to function[J]. Annual Review of Plant Bi-
ology, 1997, 48(48): 703-734.

[14] PADMASREE K, PADMAVATHI L, RAGHAVENDRA
AS. Essentiality of mitochondrial oxidative metabolism for
photosynthesis: optimization of carbon assimilation and pro-

tection against photoinhibition[ J]. Critical Reviews in Bio-



6 4]

B8 55 NaCl 381 7T 32 45 9 R gk 42 X6 26 3R 8k B LA Sl R 1 1 5% i

1181

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

chemistry and Molecular Biology » 2002, 37(2):71-119.
RAGHAVENDRA A S, PADAMASREE K. Beneficial in-
teractions of mitochondrial metabolism with photosynthetic
carbon assimilation[ J]. Trends in Plant Science, 2003, 8
(11):546-553.

TCHERKEZ G. BOEXFONTVIEILLE E. MAHE A. Re-
spiratory carbon fluxes in leaves[]].

Plant Biology, 2012, 15(3):308-314.
HOEFNAGEL M H N, ATKIN O K, WISKICH J T. Inter-

Current Opinion in

dependence between chloroplasts and mitochondria in the
light and the dark[J]. Biochimica et Biophysica Acta (BBA)
- Bioenergetics, 1999, 1 366(3): 235-255.

NOGUCHI K, YOSHIDA K. Interaction between photosyn-
thesis and respiration in illuminated leaves[ J]. Mitochondri-
on, 2008, 8(1).:87-99.

YOSHIDA K, TERASHIMA I,NOGUCHI K. Up-Regula-
tion of mitochondrial alternative oxidase concomitant with
chloroplast over-reduction by excess light[J]. Plant & Cell
Physiology» 2007, 48(4) ; 606.

ZHANG L T, GAO H Y, ZHANG Z S, et al. Multiple
effects of inhibition of mitochondrial alternative oxidase path-
way on photosynthetic apparatus in Rumex, K-1 leaves[]].
Biologia Plantarum, 2012, 56(2) . 365-368.

SMITH C A, MELINO V J, SWEETMAN C, et al. Manip-
ulation of alternative oxidase can influence salt tolerance in
Arabidopsis thaliana[]]. Physiology Plantarum . 2009, 137
(4): 459-472.

WANG H, LIANG X, HUANG J, et al. Involvement of
ethylene and hudrogen peroxide in induction of alternative re-
spiratory pathway in salt-treated Arabidopsis calluses[]].
Plant & Cell Physiology » 2010, 51(10): 1 754-1 765,
ARNON D 1. Copper enzymes in isolated chloroplasts poly-
phenoloxidase in Beta valgaris[]J]. Plant Physiology . 1949,
24(1) . 1-15.

DEMMING-ADAMAS B, ADAMS W W. Xanthophyll cycle
and light stress in nature: uniform response to excess direct
sunlight among higher plant species[ J]. Planta, 1996, 198
(3): 460-470.

Bed, sk 0, Bt A KA an xR W B A &
NEMGRVOCS BT ] PUACRE Y . 2004, 24
(5): 812-816.

YANG X Q, ZHANG S Q, LIANG Z S, et al. Effects of
water stress on chlorophyll fluorescence parameters of differ-
ent drought resistance winter wheat cultivars seedlings[J].
Acta Botanica Boreali-Occidentalia Sinica, 2004, 24 (5);
812-816.

LI X, FENG W, ZENG X. Advances in Chlorophyll Fluores-

cence analysis and its uses[ J]. Acta Botanica Boreali-Occi-

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

dentalia Sinica, 2006, 26(10). 2 186- 2 196.

BINGHAM 1], FARRAR J F. Activity and capacity of re-
spiratory pathways in barley roots deprived of inorganic nutri-
ents[J]. Plant Physiology & Biochemistry, 1989, 27(6):
847-854.

BAKER N R. A possible role for photosystem || in environ-
mental perturbations of photosynthesis [ J ].
Plantarum , 1991, 81(81):563-570.
ALLAKHVERDIEV S I, SAKAMOTO A, NISHIYAMA

Physiologia

Y, et al. Tonic and osmotic effects of NaCl-induced inactiva-
tion of Photosystems I and [ in Synechococcus sp. [J]. Plant
Physiology, 2000, 123(3): 1 047-1 056.

B SO 7 N 1 81167 SN -9 9 P O L B L o)
i PSTI G e R R N B F i i 2 ma LT ). @24
. 2010, 37(7):1 065-1 072.

SHU S,SUN J,GUO S R, et al. Effects of exogenous pu-
trescine on PS|I photochemistry and Ion distribution of cu-
cumber seedlings under salt stress[J]. Acta Horticulturae
Sinica, 2010, 37(7): 1 065-1 072.

Bk BL. HYOLE DU BT ID]. F . b E R B B
FE A B LB e B 858 Be) » 2007,

SANTOS C L V D, CALDEIRA G. Comparative responses
of Helianthus annuus plants and calli exposed to NaCl. I
growth rate and osmotic regulation in intact plants and calli
[1]. Journal of Plant Physiology. 1999, 155(6),769-777.
SANTOS C V. Regulation of chlorophyll biosynthesis and
degradation by salt stress in sunflower leaves[ ]J]. Scientia
Horticulturae , 2004, 103(1):93-99.

BARTOLI C G, GOMEZ F, GERGOFF G, et al. Up-regu-
lation of the mitochondrial alternative oxidase pathway en-
hances photosynthetic electron transport under drought con-
ditions [ J]. Jowrnal of Experimental Botany, 2005, 56
(415): 1 269-1 276.

ZHANG L T, ZHANG Z S, GAOH Y, etal. Mitochondrial
alternative oxidase pathway protects plants against photoinhi-
bition by alleviating inhibition of the repair of photodamaged
PSTl through preventing formation of reactive oxygen species
in Rumex K-1 leaves[J]. Physiologia Plantarum ., 2011, 143
(4): 396-407.

ZHANG D W, YUAN S, XU F, et al. Light intensity af-
fects chlorophyll synthesis during greening process by metab-
olite signal from mitochondrial alternative oxidase in Arabi-
dopsis[[J]. Plant Cell &  Environment, 2015, 39 (1),
212-229.

(8. £ 1)



