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Molecular Mechanism of Formation and

Functional Characteristics of Casparian Strip

WENG Qunging, ZHENG Xiujuan, XIE Huifang, SUN Xinli*
(Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fu-

jian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract; Casparian strips are a cellular feature found in the roots of all higher plants, which are ring-like,
hydrophobic cell wall impregnations that tightly attach with the endodermal cell membrane. Casparian
strip acts as a barrier to the free diffusion of solutes from the soil, and forces ions through endodermal cell
into the stele. Casparian strip was found in 1865, but many botany textbooks cannot give completely cor-
rect information on it. The mechanism of its formation was gradually aware until Casparian strip mem-
brane domain proteins (CASPs) were characterized and the substance of Casparian strip were revealed.
The scaffold, which consists of CASPs and receptor-like kinases, was needed for Casparian strip forma-
tion. Casparian strip diffusion barrier in Arabidopsis is made of a lignin, and NADPH oxidase-RBOHF,
Peroxidase-Per64 and ESB1 dirigent protein were used to catalyze the polymerization with monolignol,
which was transported from cell into Casparian strip membrane domain by ABCG transporter. Here, we
reviewed the major findings and models related to Casparian strip and its function in light of recent molecu-
lar data. This article can provide a framework and inspiration for further molecular dissection.
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Fig. 1

Schematic diagram of lignin deposition of Casparian strip in endodermal cells
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