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Progress on the Regulatory Mechanism of Adventitious Rooting
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(Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Im-

provement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China)

Abstract; Adventitious rooting is a complicated organogenesis process involving perception of external sig-

nals and cascade coupling of internal and external signals. It has been one of the hot spots in the botany

field. This review introduced the events of induction phase, initiation phase and expression phase during

the development of adventitious root, and summarized signaling pathways, gene expression, cellular and

metabolic characteristics in each developmental phase. This paper will provide theoretical foundation for

further researches on adventitious rooting.
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AR R B AR ECH B > T B AR G Os-
WOXT11 3 i 635 10 K R 5 36 Dbk R AS S8 AR 4 H 1
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Table 1 Information of genes related to adventitious root development

B 44 K L/ i 491 GEALM /e FE R bR 2 2% 3k

Gene name Species Stage Mutant / transgene line Reference
PrSCL1 W Pinus radiata %51 Induction [51]
PrSHR WA Pinus radiata %% 5] Induction [51]
AtABCB19 W I Arabidopsis J2 3 Initiation abcbl9 [4]
AtMirl60a/c WEEIF Arabidopsis JA #13 Initiation AtMir160a-OX [20]
AtARF6 I+ Arabidopsis J& 3 Initiation arf6 [20]
AtARFS8 WS Arabidopsis B s Initiation arf8-7 [20]
AtARF17 B IT Arabidopsis J3 3 Initiation AtARF17-OX [20]
AtGH3.3/3.5/3.6 IR IT Arabidopsis Ja #h ] Initiation gh3.3 gh3.5 gh3.6 [52]
AtWOX11/12 LI+ Arabidopsis J& sh Y Initiation woxll/12 AtWOX11-0X [5]
AtARR1/10/12 WEIF Arabidopsis Ja 30 Initiation arrl-arrl0-arrl2 [53]
AIAHK?2/3/4 B Arabidopsis 2 31 Tnitiation crel-12 ahk3-3 ahk2-2 [54]
ACKX1/2 RIS Arabidopsis 331 Initiation AICKX1-0X AiCKX2-0X [55]
LeNCED1 F i Solanum Lycopersicum A 3 # Initiation notabilis [42]
SINR Fi Solanum Lycopersicum J5 88 Initiation Nr [29]
OsYUCCA1 JKFE Oryza sativa J& Zh 1 Initiation OsYUCCA1-OX [56]
OsPIN2 KA Oryza sativa J2 3 Initiation OsPIN2-OX [57]
OsMir393a/b JKFE Oryza sativa J& ] Initiation OsMir393-0X [58]
OsCRL1/ARL1 IKFE Oryza sativa Ja #h ) Initiation crll/arll [11,59]
OsCRL4/GNOM1 JKFE Oryza sativa J2 3 Initiation crld/ gnoml [60,61]
OsCRL5 JIKFE Oryza sativa J2 Zh ] Initiation crl5 [62]
OsWOX11 KHE Oryza sativa J& ) Initiation woxll [63]
OsBR6ox IKFE Oryza sativa J& 3 Initiation brdl [33]
ZmRTCS T K Zea mays J2 3 Initiation rtcs [12]
PtaERF003 H# Populus J& 3 Initiation PtaERF003-OX [64]
PtRR13 M1 Populus P 8] Tnitiation ADDKPtRR13 [41]
PtAIL1 F# Populus Je s Initiation PtAIL1-OX PtAIL1 RNAi [65]
AtNAC1 WS Arabidopsis 3] Expression 35Spro: NAC1-SRDX [66]
OsPIN1 KK Oryza sativa 2K Expression OsPIN1RNAI [67]
OsCAND1 IKFE Oryza sativa ik Expression cand1 [16]
VuPRP1/2 Hi% Vitis vinifera 2635 Expression [68]
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AR RV A E AR A IS B % R R AR 2 5 BUK R
AEMREH WA, 55 4, OsCRLS e IE 7] 4 12
A T4 43 2L R N KL [ OsRR1 Y33k , 300761 40
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PraERF003 JE[H 4 1% — 4~ AP2/ERF K% I % 5%
K5, ZAMEA KRS S, 1 KK PraERFO03 1)
FI s bR R R E R E B | m . PrAILL
W SRR F R BE & AP2/ERF H: R 58 1 i B 5% 3o 6
ik PtAIL] WG BE MR R AN E R EH 35 2 T o A=
AL T RNAL B R B R & A 8 IR 5 H BG4
M PtAILY W] fig 5 40 Mo 43 2 FAR 8 AR 5 2 2 Al
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OsYUCCAT Tr K R AR 6, 2 B2 1) 4k K R B &
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FE PRI RR R AN E AR 2 1 s i LA 2R
BT R AR i ik OsPIN2 % [ BE i
AR FE R B AR R SR, SR
BT B 25 A K R MR 2R 45 4 BB 0 AR 2H 24 S R
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HRECH W25/ TEF A 8, #ET OsPIN2 W] RES 5K
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CRLA/OsGNOM]1 3 A 4 1% — A~ L 7 78 GNOM [#]
TR, TR AR BOUK R M A RAR 19 48 K Rk
PEIZ i 52 B, AS AR A H 3 kb I Os-
CRL4/OsGNOML1 i i3 4 5 b 135 A= 1 28 09 vk B
JEE AR A AR g st L 5y Ak xR O B R
Y HE AT U R Ab B 2 4R e A KR b Bk A
AtABCB19 W3k, T fe 8 K R iz i, 3%
TAA e 9] F F A7 )= 38 8 B, s 5 R & R
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OsMir393a #l OsMir3936 53t 3% ik (19 7K F& 4k &
AN HRECH ST B AR AL 3 S 3 I AT g £
A A K K2 K E I OsTIR1 F1 OsAFB2., M Tfij
IHIKRE AR 2R s R IT arf6.arf8 %
AR AtARF17 i3 A 0k R A E R EH > T 5
A= AtARF6 . AtARFS 33 36 ik 2 (10 R 52 M8k
HZ T AR, AtARF6 Ml AtARFS j& AtMirl67
FFE A5 . BE IE [a] 45 A8 2 AR &, 1 ALARF17 &
AtMir160 FYFEFR 06 2 R R . ik — 25 5F
SRR R o BE AtARF6 il AtARFS KA
# GH3.3.GH3.5 fl GH3. 6 K 1Y %35, k1 f#
1k JA-Asp JA-Met Fl JA-Trp (R4 i, B ffi JA-1le
f) 5 R A R B L He AP JA-Tle 58 5 0% COIL {5 518
6 R 7 1) AR LRSI R RS S AR 0 K A

B R4 g 43 4 Z i B K7 PeRR13 J&— A~ 1E [A]
R 20 L 53 L AT T A B e S L L se AR 1A
REM IR &Y. 78 8/ JF ., AtARR1,
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WA ERTT, AtAHK2, AtAHK3 fl AtAHK4 j&
Y M 5y R R 2R BRI ST ahk2 ahk3 ahkd S8 7E R
TR EAREEA A R IR B i3 — 25 B 5E K
B AtAHK3 Fl AtAHK 4 2 40 43 24 Z 4R & AR
KA EE I FPY . CKX((cytokinin oxidase)
S FAD B 40 i 53 24 R A AL G . BE B i 5 000 B
MR | K 2845 B AN TR0 R 2 S5 3G 0 % 1 A4 i 4y
B, W FEik ArCKX1, ACKX2 1455 % i 5 A
PR R EMAEE B2 TR AR,

F il LeNCED] 4t - =0 3R 5 280 38 N 20
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A A2 R LeNCEDL % 48 % pt 1y, i & ik
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