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QTL Analysis on Carbon Isotope Discrimination of Wheat RILs
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Abstract:In order to understand the genetic mechanism of carbon isotope discrimination (A) and water use
efficiency(WUE) in wheat, we used recombinant inbred lines (RILs) of wheat to study the genetic basis of
A under different water treatments, based on QTL mapping and environment-specific assistive effect analy-
sis. The results show that: (1) A value in the RILs population showed a normal distribution, indicating
that A is a quantitative trait. (2) We detected 11 major-effect A QTLs in 2B, 3B, 7B, 1D, 3D and analyzed
their phenotypic variation rate between 10. 83% —46. 87% , 9 additive X environment interactions QTLs
and analyzed their phenotypic variation rate between 1. 02% — 3. 15% were detected. (3) We detected 5
pairs of epistatic QTLs which include 3 pairs of epistatic QTLs and their interactions rate between 0. 86 %
—2.01%. (4) Additive effect and contribution rate were larger than epistatic effect and contribution rate,
A-QTL and A-QTL X environment contribution rate were larger than AA-QTL X environment contribu-
tion rate. The results indicated that the genetic variation of A in the RILs population was mainly affected
by additive effect QTLs, the major-gene-controlled A has a greater effect than the water environment.
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Table 1 Traits of parents
PEAR Trait Ni)ilfu?ﬁl le;fclf;l%7 jiz?aiie Tt 1?:3%
fik [7] 3 2 43 PR Carbon isotope discrimination/ %o 20.9 19.1 20 7.69*
4% % 4 i (SPAD) Chlorophyll content 55 48 51.5 11.2
B2 K 4R Leaf water loss rate/(mg+ g ! » min ™ 1) 2.27 1. 69 1.98 7.45*
2 415 K Relative water content/ % 286 240 263 19. 4%~
¥ Plant height/cm 86 120 103 —46. 7%~
Hx x RN BEESF
Note: ¥ * mean extremely significant differences
xR2 FAXSEMHETERM RILs BHEMNKREAMZSBHER(A)ERENR
Table 2 Traits of parents and RILs under different water conditions
. SEARBR [ K 47 PER ParentA RILs #£f& A RILs population A
Treament  THIG | TEOT RAH RME TRE EREN WE | WE R
Ningchun 4 Ningchun 27 Max Min Mean V% Skewness Kurtosis
Wo 20,12 18. 60 20. 22 17. 84 19. 30 2.07 —0.35 0. 64 0. 98 0. 69
Wi 20.55 19. 30 22.10 19.52 20. 67 2.22 —0.01 —0.02 0.98 0.93
w2 20. 94 19. 70 21. 89 18. 49 20.78 2.46 —0.73 —0.14 0. 97 0. 55
W3 21.49 20. 36 22.19 19. 56 21.01 2.48 —0.17 —0.09 0. 98 0.59
F3 FAEKSEHT RILs EREFEMLESHE(A)SWFELR
Table 3 Traits of parents and RILs under different water conditions
s A #E 2E A super-high parent A BAEE A super-low parent AT XEZ A A lines between parents
Treatment o Materials  Hoffl Proportion/%  #1EH{ Materials  H.f Proportion/%  # %L Materials  H.fil Proportion/ %
Wwo 37.0 28.9 43.0 33.6 48.0 37.5
Wi 29.0 22.7 41.0 32.0 58.0 45.3
w2 27.0 21.1 41.0 32.0 60. 0 46.9
W3 20.0 15.6 37.0 28.9 71.0 55.5
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Table 4 Additive and additive X environment interaction effects of A
. ¥ o i Lon I i 7 HAED  WMPERUT AAi
y Year Chromosome Marker interval ’ Interval distance/cM /% Additive effect /%
2014W0 7B barc267~gwm46 3.26 1. 45 15. 65 0.227 3.15
2014W3 7B barc267 ~gwm46 11. 46 1.45 46. 87 0. 349 3.15
Qcid-7B
2015W1 7B barc267 ~gwm46 7.16 1.45 30. 34 0. 264 1.95
2015W2 7B barc267~gwm46 4.32 1.45 34. 34 0.283 2.11
Qcid-3D. 1 2014W1 3D barc323~gpw4451 5.42 21.47 24,32 0.248 1. 49
Qcid-7A 2014W1 7TA gwm282~barcl08 3. 89 28. 37 17. 54 0.219 3.02
Qcid-4B 2014W2 4B barc174~wmc657 3.02 6. 14 10. 69 0.238 1.83
Qcid-3D. 2 2014W3 3D cfd223~gpw4136 4.58 3.08 12.14 0.169 1. 89
Qcid-3B 2015W0 3B gwm285~gwm376 2.75 1.42 10. 83 0.128 _
Qcid-2A 2015W2 2A gwmb526 ~gwm382 3.57 18.12 11. 96 —0.192 1.11
Qcid-3D. 2 2015W3 3D qpw4136~wmce552 1.77 3.93 12.07 0. 159 _
Qcid-3D. 3 2015W3 3D qcfd223~gpw4136 4.25 3.08 10. 85 —0.176 1.02

T AAL. I B AL ERLN s H2 AEL A4 X CBR 58 B4 5508 53k 2

Note: AAij. The epistatic of effect of additive X additive; H* AEi. Contribution of additive X environment interaction effect
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Table 5 Epistatic effect and epistatic effect X environment interaction effects of A

RGREN i X il

et g

AAQTL  (hromosome Mok etoral  Chiorbme  Marhos raterval AA H*AA/%  H*AAE/%
Qcid-1A/1D 1A gwml64~wmc24 1D wme590~gwm337 0. 266 21. 89 -
Qcid-3B/4B 3B wmel ~gwm?247 4B ewmb~gpw7272 0. 226 16. 06 2.01
Qcid-2D/5B 2D gwmb539~cfd233 5B gpw2051~barc243 0.365 40. 34 -
Qcid-4A/6D 4A gwm397~cfa2256 6D cfd188~barc196 0. 245 17.42 1.76
Qcid-3A/4B 3A gpwb042~gpw2169 4B wmc349~barcl74 —0.417 10. 52 0. 86

HAAL BN s HPAA. BRI TTRR s HP AAE. 07 M X 3R 85 5 7 5Tk %

Note: AA. Epistatic effect; H? AA. Contribution of epistatic effect; H* AAE. A contribution of epistatic X environment interaction effect
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