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Abstract:In order to investigate the functions of DCL genes in Dimocarpus longan, we isolated gene se-
quences of DIDCL1, DIDCL2, DIDCL3 and DIDCL4 from D. longan genome data. Analysis of cis-acting
elements and regulation of miRNA were performed on the D/DCLs family members. Expression of DID-
CLs were analyzed in embryogenic callus (EC) under abiotic stress and exogenous hormone treatment in D.
longan. The results showed that: (1) the promoters of D. longan DCL genes not only included the cis-
acting elements of TATA and CAAT box, but also had a large number of light response elements, hor-
mone response elements, stress response elements, tissue specific regulatory elements and other cis-ele-

ments for plant growth and development. These results suggested that the transcriptional activity of the
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promoters of D. [longan DCL gene might be induced by the signals of light, phytohormones and abiotic
stresses. (2) The miRNAs were screened for their effect in regulating D. longan DCL genes, and the re-
sults showed that DIDCL1 was regulated by miR162 and miR1024, while DIDCL4 was regulated by
miR390 and miR396. (3) The expression of DIDCLs was analyzed by real-time quantitative PCR. It was
found that after GA;, ABA and ETH treatments, DIDCLs gene were down-regulated. However, they
were dramatically up-regulated under high concentration of ETH treatment. (4) DI/DCL2, DIDCL3 and
DIDCL4 were up-regulated when they were treated with high concentration of sucrose (6%), in the excep-
tion of DIDCL1, which was significantly increased at 0. 1% sucrose concentration. During heat treatment,
DIDCL1 was significantly up-regulated at 34 C, whiles the DIDCL3 gradually decreased with rising tem-
perature. The expression level of DIDCL2 and DIDCL4 exhibited slight variations. NaCl treatment in-
duced the response of D/IDCLs at different time intervals, however, inhibited the expression of D/IDCLs at
1 h. The expression patterns of D. longan DCL genes response to hormones and abiotic stresses suggested

that DIDCLs gene were not of a simple one to one correspondence but rather a complex response mecha-

nism.
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Table 1 qPCR primers of D/IDCLs in this study

719 4 FR

Primer name

ElEZ 2]

Primer sequence

DIDCL1-qFor
DIDCL1-qRev

DIDCL2-gFor
DIDCL2-qRev

DIDCL3-qFor
DIDCL3-qRev

DIDCL4-qFor
DIDCL4-qRev

GTCACTCCAGAAACTCTCCCCATG
AGCAACTCCTACCTGAACACCATC

CATCTTCCTCTACACACTCTGGA
GGGTCACTCTCTGTCACTCTACA

TGCTGAAGGTCTTTGAAGTCG
GATGAACAAGGTGGACGGAC

CAAGAAAGCGGTGGAGGAGAAC

CTGATGAACGAGAGCAACTGTAGG

IR KRB s/ PN
Annealing temperatures/ C Product size/bp
61 150
60 128
61 172
60 160
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A5 FRT A S Y Y 3 5% e B T 4 s DIDCL3 K&
s /D AR A 43 5y 3 A F 4 A, ZRhiihg
Wi 8 T F A AE Fe Wk T DIDCLs 7] fig & 5 £ Fh i
SIS

i R 1R e 41 B IR DIDCLs 5% A [ Y 51
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Different cis-elements with the same or similar functions are shown in the same color

Fig.1 Cis-element analysis of DIDCLs promoters
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DL 45 SR 3 B e iR DCL 3 B e #  vh AR K
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DAAS 52 56 2 4 2 19 i HR A4 IR 2% A= 23 B2 Y miR-
NA SCHE R $e e D LB IR DCL 3 R i AR TR
JE B Sy B R T A4 i 3 75 51, R psRNATarget
TELR IR X 98 #5 p IR DCL %2 R [\ B 5L 19 miR-
NA # A, 4528 (£ 2) 8, DIDCL1 %7 3|
miR162 Al miR1024 #i8+ . DIDCL4 % ] miR390
M miR396 W45 . 1M DIDCL2 Fl DIDCL3 Ff A i
M5z %] miRNA J8% . EB M IT &k I miR162 £7
785 DCL1 mRNA H 4 FF 41, Hon] DL 2o 61 % 45t
P DCL1 3N ) a1, DCL4 & miR822 fI
miR839 MY JE T &4 75 B9 . 7 K G M E 1§ DCL2
mRNA #1422 nt miR1515 Al miR1507 8 [ 77 45,
T AT RL 5] % 21 nt siRNA ff 7= A2 af i,
miRNA 5 DCL % [H Z [0 £ 76 & 5 2% 1) X 45 ] 42
Y5, XHE¥E DIDCLs AS[R] AL 51 56 K ) miRNA i

T HU A B T o 5 22058 e IR DCL & P AE miR-
NA N1 TA g i e H A5G R R,
2.3 DIDCLs EARMEMIEEYHBLET R
KRR
2.3.1 AREMELET DIDCLs MR IEEKX 75
ANEHeE GA; . ABA #1 ETH 43 F Jg iR EC
DIDCLs S F£R g5 R WK 2 frn. 78 GA, 4
F R .DIDCL2 ,DIDCL3 1 DIDCL4 # {55 55 K -
A HEEAR BT RE LI FEWE N 3
mg/ L b P ] % 5% 3R A8 i e A% ; DIDCLT W 2 30 T
AR F kB 7E 3 me/L Ab R 5% 36 1k i de
fiX.6 mg/L Ab3 T3R5 & A b Fh, Bl & vk B i —
AT H A RRR (| 2, A 7E I 7% R b 7
T, EC fh DIDCLs 8 Y 3 35 52 B0 T 3
PR BLVE IR XF DIDCLs 7] g HA7 7 8 32 4E H
(K 2,B), KPR .DIDCLs R RIAE“U”
AR, 7E AR e B A0 P B (10,30 1 50 mg/L) , Higk
K B S A7 BP0 5 T v B (100 mg/ L) B, 5
N3 L Ft, #2758 DIDCLs J P GE % ) 1 g Wk i
ETH &3 (& 2,0),
2.3.2 EEYEMBELIET DIDCLs IR IEEKX &
M ATV B E R IR B R R Bk ia kb B2 R DIDCLs
FED B AR XS 638 25 F A5 R AN B 3 PR . FE ERE AL 3R
N .DIDCL2.DIDCL3 Fl DIDCL4 fy3 ik 8 2 H A
— B, HE W AR L B THE B BT R AE
6 V0 4b BRI 22 35 i A = s DIDCLY WIZE 0. 1% JEA ik
JE A PRI R B Y b T BB R R R e AR GA
— R E BARK . #2878 DIDCLs fig % Wi [
W5 (8 3, A) . REHR AT . DIDCL] 1E

2 HEER DCL EEH miRNA
Table 2 Prediction of regulation miRNA of D. longan DCL family

EX 48 miRNA %5 bk L X 1117
Name miRNA Acc Expect Alignment Inhibition
miRNA 21 GACCUACGUCUCCA-AAUAGCU 1
miR162 3.0 N N cleavage
Target 3682 CUGGAUGCAGAGGUGUUAUCGA 3703
DIDCL1
miRNA 19 AUCGGAUAUAGGUUGGUCU 1
miR1024 4.5 P cleavage
Target 4919 AAUCAUAUAUCCAAGCAGA 4937
miRNA 21 CCGCGAUAGGGAGGACUCGAA 1
miR390 4.5 A cleavage
Target 3195 UAUGAUUUGCCUCCUGAGCUU 3215
DIDCL4
miRNA 21 GUCAAGUUCUUUCGACACCUU 1
miR396 4.5 Dol cleavage
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Fig.2 Effect of GA; (A), ABA(B) and ETH(C) treatments on relative expression patterns of D/{DCLs
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Fig. 3 Effect of sugar(A), temperature(B) and salt(C) on relative expression patterns of D/DCLs
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CLs ANJa] 3 A B B0 % 1A 7 s K P A2 Ak 3 e oy —
LA NaCl 1 h 4b #5555 36 3k & e I S ) 11 /2
DIDCLY #¢ 2 h 4b P mf % 5 % 38 & & &, i
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PR A e e S AR AR A L B 7 B A R A0 Ak P i) RE 4K
DIDCLs HePH By ik 52 B g #k (KB 3,0),

3w

3.1 ZRDCL ERRERBNFHEST

J Bl AL T B R R L R R 8L B T
PURE SRS & RNA RS HAN DNA P31 2 B
2 U 4 e IR 2 3% 32 3K 0 T DX Sxk G g A I XA
TR o3 8 A B T g B 5 DN 3% 2k 98 42 pL 1l 4 1k
R . CABITER KR BT M4 DCL %
PR 37 L 1000 bp #1,Spl J&/K 8 DCL %N
N FE RN T, GT1 WREE M K E

(49 56 SN TC A 5[] R A 40 7 ST R A 09 0 3l X
HitfE e Spl Ml GT1 e W oe . Wi, 78 ¢
118 1 3h 7 IX 88 b ik % 3 ABRE, GARE, P-box,
TCA.CGTCA fil TGACG %o, £WHY DCL
L DK AT B I 1 B % TR L R R R LK IR R T R T R
SESHTEE . FEAPI B, DIDCLs 3 H 5
s ALk Spl. G-Box.,Box 4 1 G-Box 7t H
FE. BTWEmWN I/, BIR DCL AR T E
W& A 4E H 9T 4 ABRE., GARE, P-box, TCA,
CGTCA #1 TGACG 4k, i % TGA-element #l
ERE JefF, #2785 TR DCL 3K i i iy 2k K E f 2
K B VR o 33X SR U A [ 9 ] DCL (R f
Ja 2h T BE B — o AR SE M R SO D RE 25 Sk

B T B G B IER A A R 4 0T A, K
e LRE JT AV A DCL 3k R 38 A7 78 D4 Bl 18 5 3
B 45 8 2 90 1, 1 GC motif, HSE, LTR. fil TC-
rich”" . BSREIR DCL 35 8 F 5 A1 GC
motif JoH AR Z 192 ARE, I H3X ¥~ H
JCPEYI e AR A, 36 W AS [F] 9 Fl i) DCL 3 A s 3+
JE ] e A AT RSP H 2 B AT 0T DLGE A N
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