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Abstract: F-box proteins are a protein family containing F-box motif and in charge of recognizing the sub-
strate to be degraded during ubiquitin-proteasome pathway. In order to promote the functional study of F-
box family in Arabidopsis thaliana and other important crops, and draw a complete metabolic network of
the family in plants as soon as possible, the present paper focuses on the research progress of F-box family
in A. thaliana reported in recent years, including the amount, type of member of F-box family and their
roles during growth and development, cell signal transduction, biotic and abiotic stress resistance and oth-
er physiological processes.
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WRMEA T EENEN. PHRERVLES fEZ R
A0 0 AR R A 2ok R v A 3] O S RS P RN T e
SCF & & 1K 2 4 i E3 M iy — K 2K, Skpl, Cullin
(Cdc53) .Rbx1/Rocl/Hrtl F1 F-box & 4 3L 6 20 )%
SCF & & A i e A & 28, i i e 45 5 IR Y i F-
box & [ 52 B0 AN ] iS00 4 S e i

F-box i [ 5 M 1) — A~ 3 [a] Ff f 2 3% A 20 50
A FFR ALK F-box ¥ (motiD) ,  FIZ /7 &
JefE Cyclin F & 3, 80K HoAw 4 4 F-box"™ ., F-
box R HATEE AW T IZHTE, &5 HIE. TN
SR A R DL R FL S b R BT R F-
box # M. 7EC 8T M R BN A rh e T F-
box [ 33 AN, F5 0 B AF £k e 520 AP
BEREr 18 AN, T 38 AN KR R 687 AL 4
T 525 AN g ok 285 AN R oF R kR
140024~ Hy 3k S0 55 4 vT 0, A 4 h Fbox R
8B B 2 TR S 455 R 40 1) 400 7 T b A E 1Y
B i 2, PR folf G kA 00 O o R R — S R
BT S

F-box Z5 Il — AL TH F B N i, K25 40
~50 LR A K, J2 5 SCF & & 1k Skpl 5k
Skpl ZUE M 45 & X . BR T N S F-box
X4k F-box H Ry C o {1 11 ib ££ 75 — L& 5 55 (1 AH
HAEH B VI G R a5 1. BT BB 5 T R 5+
PEIE Y R . B AT, AR C o 9451 1R
[F]. Al f F-box & 1 k47 4y 38, 0 52 & MR i B
(LRR) . Kelch 4 #515,, WD40 ( Trp-Asp) . Arm. ¥
TR45#) JFBD 25y s 5¢ CRFA 2549 5 . CREFB %514
B CRFC 25 #5531 20 25 1) Bl A 28 U 7E 400 /g o
3k, T % E () CRFA | CRFB. CRFC % 45 1
B PP A B R R I B T F-box 2K 4 TE
PEgr e B EZEAEM. Fbox & HAER
SCF & &k iz & H: 1 E3 (9 A 0y . ZE Y
ARKE GREAGSH T 05 38 v 34 5
BT . R EZE A R P
ARG DI RE B 5T 2 S e R .y A 0 At AR )
F-box Z8 163 X (14 Dy R Wt 52, OF ik — 25 TR Ak HAE U
AT RS RE N X R T PR KGR 2 5
I IIREWE IS B 45T

1 Fbox EB@HHERKAE

1.1 F-box EBESHERBERST
W I+ ) UFO (unusual floral organs) &4
Yy rp S 5E S — > F-box JEPME 2 B 2RI R

IEEEE Y, HRBT SR —RINMELT
SH L BAEEIT BT SCEUT 2 5 T A Y 0 8 2%
HRBEMREES D M ERW, F-box # K FOAL
1 At5g22700 FERI R IF 45 A BUh B Rk AEAE
FAR ek 0 o, U A X 2 A 356 X AT R R A
TEFAR M & o B A Y . Zhao %55 3@ i
Oy BE XU AL MRk wfo2/askl-1 By R R, HF 58T
ASK1 MIUFO ZRIMMHEER LR, FEEFRERK
L WL AR AR 1) 22 B0 15 A G AR (AR AL L (LA 25 1 B B
Fb B 58 AR (A SRy 7 R, A 5E AR R K 1Y 2 R L B 5 AR
W ufo2 Z ARAEIE L B ABNK ufo2 b, FEFIN
Jy ASK1 5 UFO M EAEHRERESAE AT . M
T ZIX FHE (i Armadillo  H) 5 F-box &
H SAPMIEEMAS S TG E LTSRS, fik
AL F-box BEHIL S S T MIT S E LT L7,
2R AE A g RS s, A,
1.2 F-box EAS#FRIRFBF L

Peng %% W58 T 1 B I+ ' F-box K& M
FOA1(F-box overexpressed/oppressed ABA signa-
ling) LA, UEM L T ABA {55 & 42 % Fh 1 &
R R . BESE R L R IF F-box LA
At3g16740 £ mRNA K- bRk 52 #6206 F
WLHAE R ML F . 78 CaMV 35S J7 8+
il Ik Ar3g16740, U IF AT R ZFRFEAR. Y
FHAS [ e B 19 J 9% R C ABAD) Ab BRI L % 5 IR bk 28 %
ABA BYBUBME G I, R 2R AR T EF AR AL, B A bR
F KRBT R (GA) A=W & i 3m i 71 2 54
M ZUIN A, R, Ar3g16740 ] fig o #2H GA
I ABA A= WA Bl A 56 B 3 DR Sk 5 i b 1 B &
Bk 40 3 5 FOAT [AJE Y F-box JEP FOA2
PEAT THEFE . GA Fl ABA & W B As 5 i 18 S st L A
T FOA2 i$ 8 RIAkRZ P AR VEHE & 89 GA3ox2 3
DAL ) 22 35 £ B I . T 41 187 & 1) GA 2022 . ATNCED9
H RGL2 L /) 3Rk wE ¥ T FOA2 Bl 2k 58 28
BRZ T, bR PR 3R 3R 15 B AA B AH B B B FOA2
WL GA R ABA 0 38 42 5k 1 1] 98] 2 Bl R HIR
Fom PR R 0T & . BERE S 2L 45 R R, FOA2
5 ASK %t i) ASK1,ASK2 fl ASK11 A H AE
. P4 FOA2 W] 583 i % it SCF 52 A 1R
WA RIR AN k. AT RS ROk E L F-
box 2 5 T Fh (R IR A % 1) i 4% (H 55 K5 2 MR
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1.3 F-box EAEMHRFEZE
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ore9, KL GEAS IR AE B K I8 AH O Y 5 A
T R AR E M g g e R . M5
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HE&EA—A Fbox BF M —PREARELE X, H
F-box 3J¥ 0] 5 ASK1 MHHEAE M. #4# IF ore9 1
B AR E b AT SE IR 22 Fh o B e AR AT A i
FHan R RIER, U] OREY i it 17 Kbl 12 . B i
FER M R B L DU i A . WE
HI i3 & . F-box & [ BB W2 52 a8l jg I+ i Fr 5 & i
A O SR RGE AN 2, AR e i A IR AR
v AN B
1.4 F-box EESXEEER

AR I F-box Jk P KR A 51 Ar3g16740 52
B AN o | BITEAND oy 7 0= S W B TEA I il N7 A= R (DR EB 54
B, WK cryl Bl ery2, 409 Z 4K phyB i it
ZLGZ AR phyA KA =78 B A 8 Ar3g16740 FE
PR 38 1) 56755 1 08 55 sl 38 T 2%, U W R TR R
eSS A E F ), EID1 (Empfindlicher Im
Dunkelroten Licht) 1 AFR (Attenuated Far-Red
Response) /& 2 4> F-box #EH . MR KN E1H S5
T phyA A+ J MO (E 57 S0, FERIE T,
ZTL(ZEITLUPE) 4% 1y F-box # 1™ 1 & — 4
Kelch S5#4) 5 iZ 45/ BB AOGZ R Rk .
ZTL ARt N 2%, 2 5 T fE SRl &,
HHT, T F-box 5 H 2 5OGIE A 8 sl i e il 3= %2
K FOXEE R SCE B R KGR BRI S 5B %
K AE FAAL ] i A At A R R AT
1.5 F-box EESMBEFEMHHTE

g, TOC1 (Timing of CAB Expressionl)
JEA BT A Y R P SCR iR (AP . ZTL
8 F-box & [, TOCL K & LAt B ZTL ) 438 &
R,y SCF b A Ho R FH IR . R ABIESE &
L.LKP2 fl FKF &5 ZTL SFHE K RBIEH 2 4
T|HPY, 8 FE % LKP2 (LOV Kelch protein 2)
FEEY M AREL. RIZE AT RS 5 A Y
JEATEY . ZEITLUP SR IF % 52 1 ) F-box &
F.C R & A 6 A Keleh 2548585, WF 58 % B H AR 41
I IFAEI L T RE S S5 AR W Bl 1 AR Y f kT
UL, BUE RS F-box M FI B H R4 X R KT HE A K
FIL RSB I AP B, BT LD F-box & 1 AT
e 5B Rh A OC . B H ET T B WA 4l H 2
B 5EY R R,

2 F-box HHEMMITHIEE T =
R

2.1 F-box EASEKZ(IMNESHS

TIR1 ( Transport Inhibitor Response Protein
DR —A%H F-box Z5F 8 & A T, & TAA 1952
PRSI T TIRL 4h .3 & B9 46 3 A4
5 TIR1 & & [W ¥ 9 F-box 4 1 AFB1, AFB2 #iI
AFB3, #)H  K F 52 4k, Michael &5 i — 25 %
€t AFB4 il AFBS ¥ A K K 8 55 & AR T %
X 5 ANE AL FEER  E AR RN . PR
B, F-box & I TIR1 F1 AFB2 ¥y i f& % Aux/
TAA B 5= ) 78 28 K R AR 5 @ 42 i GE W 5 AF
i, EFBEEEIHISE T FBD 45K 825 F-box & M
At5g22700 78 IAA {55 BB T k. Bl TAA ¥k
FER TS EARM AR AZ I, 5 B A R L o R
IRAEBRXT TAA B A0R%, FLOG 9808 55, 30 il 7 A s i
. AT AR TAA M6l NPA 45, i %
TR AB PR EE T A 2 e B i R L 32 0 o R B B K
TRPA Y R DU A AR 9 A K R AR PIND
1 PIN2 (13635 , 1o & 75 0 Bk 1A P9 1) 3535 2 I I
I Bl 2 A0 A U] b B A R ) SRk v . RS0
AR RERAMEH YUC ZEEEN, £ YUC Kk
FE DR 2R 38 f 7 3k 3% 36 AE bR TP B IR, 7 B Ok 98 A A
WA AL, £ At5g22700 Al fE R4 K £{5 5
WA R IE PR N L R T AR R BT RN U
A A K R PR A R A . 2017 4E,
Wright 0 3 i A 0 5 ik 2 8 T il o AR K
R KRIRZ AR F-box KWk, It 404 T 5K R LKL
MR U — 583 T TP S K RA XKW
F-box KIGLEH/Difg Bl %07 3: W58 F-box Kk
f9 Ty e $ AL TR Y S
2.2 Fbox EEEMER(ABA)KNESES

BIE I MAX2(More Axillary Growth 2)
HEE A Fbox HE L ER T LML kE R
WX ABA DL KB 35 Mt i fo s e UYL BIEE T
DOR 4 H 2 f& PA0 i b % e P3R5 1 F-box A
2R G R SR R T R AN ABA iR
ML, AR AE T T LR IF F-box JE M
FOA1 5% ABA 1 NaCl iy 375, & 84N R ABA Al
NaCl ZbH g i % G FOA1 JE ik, ABA
WEERZME R RAAR foal R T & % F K R4
B VRILTF R R IR A R LB i , HoXE AR ABA
BB 5 1o 3R IR MR R 0 B AH B, X ABA B UM
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B, ABA b3, — R 5 ABA 75 F
THE foal F& 7% fA v i) e 5 7K OF- Le BF A= Y s
ABA K3 & B RAE foal SE7AR A b Y B 5K P
DU LY B A A, X SRR S 25 R B L FOAL J& ABA
15 53 P A SCFE L 5 mT BE R R R ME . LR
A —A B K AtARKP1 44 5% — 4> SCF &2 &
R iy F-box WA, i TN Hak ABA 5%, 55
A FLF T-DNA Jfi A 28 48 (K AH L. 18 2 35 A8 Bk
ABA R H U, B L AE ABA {55 ik 48 ke
EPAEEE Y. SR IF T F-box JE ArPP2-
B11 % ABA 55 {5335 AtPP2-B11 B & & T
FERRFE RN T & B 5 W R & B b XF ABA B U
PE LT ik ArPP2-B11 WIS Wi A8 Bk XF ABA 11
UM ATl SnRK2. 3 (SnRK2 J# i /& ABA
AL R AT O o Rk R X ABA 1 B
F IS5 R F W] AtPP2-B11 7] A 58 1o 4 5 M e
fift SnRK2. 3 LAREARLF IF % ABA 55 FMAE4EY)
fiip 3 B B i L b B ST 4G SR 22 WL F-box & M
WS 5T ABA 5555, HOEA T LB X% &
R X ABA 4 8808 A7 AE 22 5. T fig
5HARZE AR R ENA .
2.3 F-box EASKEBEZ(GAINESES

AREE R (GAE Ry BURE A W) R 72 Rh 1 1
K VEFRA AR TG DL B A i A A A 2 0 36 ) i
MR REEEEER. BRist GAs & 8k 4% i
RIREH, ERE— RIS 5, Ko
GA20-E AL (GA200%) Fil GA3-E AL (GA30x) Y
FREEFEARRKBRE Lo B GAs iR 8k 10 7
— P EERE GA2-EALRE (GA20x) EMH G M GAs &
. £ GA {5 5% S+ . DELLA ¥ & A #% %
R A, FERIR ST T . gai (gibber-
ellic acid-insensitive) 4& GA A & B % A K,
GA W DL # DELLA 41 { ' RGA Fl GAL Ay %
file, T M B — R % GA g ', SLEEPY1
(SLYD) 2R IF GA 5 5 7 Rk 48 b i 1E 98 35 [
¥ . SLY1 %t F-box & H7E GA 54 ik
R EJEEAE AN, SLY1 5 RGA 1 GAL #84 B
P EAER . TS R B, SCFY A+ F T RGA
A GAT 3 26 671 ] 45 X - 19 % i DT A B T DEL-
LA X GA {5 55 Sl i am i = . ZEmi %07 R
FHA A5 B 071k 38 18 43 B 50 ma JF 3 RS B B4
JE AR B B BOHE 07 2 B 38 AN GA TR R ik F-
box LA, 38 it 43 B BioGrid 4% Fg 42 {1 1) 46 B4
X%, kKB HH 18 4~ fK it Fbox HH 5

GA20x1.GA30x]1 il GA3ox3 HEAMEEH LR,
2.4 Fbox EHSXRHRK(JA) HESES

£ 7+ . COT1 (Coronatine insensitive 1) J&
HEP S JA {55 BT 00 1 TA 155 REA% 8 37 1
YR RAK ALk &Y 0 FE B . COIL 5
ASK1/ASK2 L} AtCUL1,AtRbxl # i, SCF &
HARDY B COIL 4 3 19 JTA AR #t F SCF
(ColDE AR, BB TA {55 1 W L B+
COIl W3, s, COIl 54 %A = 2B
AHE AR 76 B K 5286 L COT JE B SCF" & &
. Pt 4 B OB ARG AT g2 SCE" & & 1R
YEREY . COIL i i JE i SCF" & & R X 4 &
2 CTRAC T FEAT 2 R ACRE AR S TA N 2E AR
B F0Y, T, F-box AT JA 5 ik#
W5 I i SCF" &2 & 4k, (3 & JA 2 i fef fig i
SCF" 54 & B AR v 7 7 IR AT
2.5 Fbox EBS5ZHENESES

LW S S F IR R R T T C RS
4 . Potuschak 257 NI RG I+ b e BE ) 2 4~ F-
box 3 EBF1 #1 EBF2, i1k EIN3/EIL %54
HALEBFL i i Rk gAY X & IR AU eb f1
Hleb f2 578 Mk ) 2 B 41 B 2,05 B R, O HLAR 2R
W2 EIN3 ., %A AR EIN3 $iz £
Wi il i A2 GH B2 /% . EBF1/EBF2 Wi 2 — & %
A 35 T BORE AR X 2 0 B0 1 % o T X2 A8 A U] ¢ B
WAL R A 20 I . XS R 12 Rk %
L B EINS S I8 5 Xt 20 B BB, & 20 i AR
4 3 s R0

3 F-box 3 H 1L I Wi i 196 58 I 3a1
R

3.1 F-box EAS5FEAE

DOR (drought resistance) &£l B4+ SLF B %
JEE 5L S % F-box 8 H L iZE Y T-DNA 4fi A
AR ] DL Bl T T R R . DR B kb S5
— AR TR AR R AR T DOR L T-
DNA 4l A i B« 38 W32 35 D] 4 B — AT 52 1) £ 4
B 7Y, B JE . Zhang VY AESE, 7R 4R IF
DOR 5 ASK 14 f CUL1 f£1E4 0 M HAEH .
DOR 587 i i S AL A o 32 1717 3 5 A8 4 6T+ 52 1 T
Z P DOR 3 3235 A8 Py 6 1 5 o 30 5 Rk, i — 25
WESE DOR 7 1) 5 4 4 R i Sk . 2 22 R
AYME B0 B AE R T 1 488 Nz R % Tl
E3 tr a3 1 31 &4 DRE Ty E3, il i
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RT-PCR W 82 T ENHE T R A3 R () 23k it
AAE L IR BRI T — A2 T RIE R B
F-box 3K AtPP2-B11,EAWF5E &8, AtPP2-B11
FEEAT LS T S om N N LEAL4 & 8 A M
HAEH  W7R T AtPP2-B11 AR AT fig4f R — A~ 8 A
T B PN LEALA JE Y T6 7 > 52 ) AR Bk 19 i
B, AL AR X 2 F-box ¥ f ) Y
LT T X6 T 5 14 o 7, {2 LA S S e A AR O 4
LR I X5 1 5 1 B JE A I
3.2 F-box EA 5B

PR IT 4L & F-box 531 A¢PP2-B11 %k
RIAE SR B30 P 3 2 AE . qRT-PCR #l West-
ern blot [SZ 8 IE] Ar PP2-B11 )%k &2 5
R385 T . WERE X% 58 RN XS 2¢ 6 H AN SE B0
B],At PP2-Bl1 figfs 5 At LEA14 KA M E A
HAE, #hME T At PP2-Bl11 % At LEA14 % 4 [%
i AE L BD At LEAL4 JfR & At PP2-B11 7825 36
FTHIEY . $kT. At LEAL4 A8 32 @b i T At
PP2-B11 & H M F e M, ff At PP2-B11 fEdR e~
FIThBEAS LI 4 R 3% . Ar LEA 14 7856 5% F B %K
- 3557 R Wi 38 % T, FE S0 R T A R R OB R G8 Ae
LEA14, Gefg W] 1 42 fm 5% 5 5 400 B v R B 1) 8 iy
EHHSY . BUE ST ArTR1 (At3g47550) 5 i 3¢ h
E3 2 Z 0 BnTR1 S [ 3, i i (R 4hz R
25 UE AeTR1 BAT E3 3% 35 [ 06 M, B &
KA HT BN . 1% H 52 200 mmol/L NaCl g 3%
o BRI A2 K A AT BE 7R ) R R B 8 bk —E Y
it
3.3 F-bx EHSRESHENELEME

a4l F-box tE 2 5 T 0L pg T I 30 458 %
ERJEME . EYE R R AR
R AR TIRL el B8R, ot i F2 75 4K W 4+ fF18
HSP90 12 5, tn 5 HSP0 ¥ 4 il , 7] §: 3% TIR1
Rt . AtFBP7 SR IF %22 R 19 F-box &
Fi, B Arlg21760 JEH 4t , J€4 K m i aa F . %
AR RIA AR B, B LW AKFBP7 Al g 2
550 Y R 36 85 ) R 5T . Remans 280 B 5E R,
IR IFH F-box R4 AT5G15710 & 48 Cd*' &
Cu*" Ab 35, AR AN &) 1 rh i 3R 5K BH 0 &, R
ZHRN S5 T Bl IF 5t 48 i e [ .
3.4 Fbox EASMKEM

WEIFFH F-box A MAX2 25 7 45 I 40
BRI G o A AR L A MA X2 S8 AR (RSB 8 N 0008 3 i

FF# (Pectobacterium carotovorum ) Fl ] FF R 54 Y
B (Pseudomonas syringae) %5 40 B W) 8% M 18 58
T XT BB — K B9 18 (Botrytis cinerea ) B B 1 A
ZR . WA K, MAX2 RAKF SIS E
S P A G I, AR T SR A A g O HLBE A
Ji T AR AR e o 978 A 1 A DL AR O A X6 T M T 52
REAIG o 340 £ Bl V8 22 1 i 1) i 28 SR OF Fboa-
Nictaba W RKZ KGR . P. syringa FIIN A 1)
W25 T KBRERN YIRS,
F-box # F1 CPR30 fE R R H 2 5 T L/ I
Xf P. syringae BB BN, 3E— 20 BIF5E K B . %k
Wiz 2 5 WK A KO8T K b R B MR
Rt R L, A5 2 F-box & A RE 42 7 1 FE T (0 4T
P L an MAX 5 i A 28 ) £ ] 98 15 480 R T 1 B
P, CPR30, 4709 1 1 Bl 728 28 5 B 0 1 1 1Y
U S ECHEIN F-box H I a3 5 480 R 9T 0 B L P
F K2 5 HX g I T A0 7 AR A

4 g B

UTAR SR 2 A T I R TR R AR A WA
B RE . F-box 8 AR iz 3 W i i 42 1) 5C i 20
GrAE Hrh R A T R U TR . R R
TR 5T . F-box 3 I K WA 01 Ak 2. Ty fiE
FETZZ5THERET MAGSH S EY L
AP 0 A B R . H RTHRGE A F-box EEH
BHBRZ HAEHEAANTIFLEA LSRR
PR A B8 T A TR AT S . H AT 18 B9
U T F-box  H R Z AN SCF & & i b i) 2
WS 5z R FMEARERER. SARERY
BEWE A A it AE SCF &2 & K i 77 A7 AR
A By Re . AT xEHE SCF & & k)5 Ly F-
box # HTEAEY) TP ATE R T E X 2 15 B9 AL R0 250
PRI A GG AR IRADFTE . O B A T 45 75 3%
FEEAWAEY . CEL TR T ilE T2
P4 F-box B W8 1R AR AR 7E AR AR K
K s BAT 2 RZ AT — A H N4 i MR AR

OO LRI ST F-box KRBT TR BL AT T
LR PR MR E A AR I REEAT T RA (R D,
IR FU At H B A AR ) R AR Y D RE T 5 4 4t
6 A AR BT A A SR T B
W AR 2E AR L B H 22 F-box 7EAEY)
H R A 190 255 3
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Table 1 F-box proteins and their related function in A. thaliana
F-box & H C i 45 ¥ 3% ke SCHk
F-box protein C-terminal domain Function Reference
UFO(unusual floral organs) 1 unknown P LS E & T Regulation of flower organ development [17-18]
e oo 2 S . . )
FOAL (Fbox overexpressed/ op-  ypo 0 gi%ﬂlﬁﬂﬂff&m?iﬂﬁ ﬁ?rﬂlkﬁﬂ}% ABA {5 5 i % Control thiz 995
ressed ABA signaling) unknown evelopment of flowers and roots, seed germination, negative regu ,25
P lation of ABA signaling pathway
TR AL AR B 1E 5 A K L GRS A AR K 3R 0 B A i A A R Ad-
At5g22700 FBD just the normal growth of flowers and roots, and negative feedback [20]
to inhibit the polar transport and synthesis of auxins
SAP(Steile Apetala) FH unknown Z 514 E &K B Participate in floral organ development [22]
. . W DT W & AR L 56 fE 5 B 4 O¢ Affect the seed germina-
At3gl6740 A Al unknown tion, and Associated with optical signal pathways (24,29]
FOA2 ( F-box overexpressed/ op- IE [ R R R IR | £ ) 98 45 B 7 8 & Positive regulation of seed -
_over FBD : ) Sitive [25-26]
pressed ABA signaling 2) dormancy, negative regulation of seed germination
ORE9 LRR FEIR M % Delayed leaf senescence [28]
EID1 ( Empfindlicher Im Dunkelro- L7 257 phyA /%1615 5 % 5 Participated in phyA-mediated op- [30-31]
ten Licht) - tical signal transduction e
AFR ( Attenuated Far-Red Re- Lz Z 57T phyA S #8615 5% T Participated in phyA-mediated op- [31]
sponse) - tical signal transduction
ZTL(ZEITLUPE) Kelch % 5565 5 T 15 72 Participated in optical signal transduction [33]
TOC1 (Timing of CAB Expressionl) K1 unknown Z: 5 W) 5 Participate in biological clock regulation [33]
ZEITLUP Kelch TETFAEWI 2 15 15 Yy 6 8 15 3 7% Participate in biological clock regula- (367
tion during the flowering period
g‘rl(ilm( ;l;ransport inhibitor - response LRR P49 TAA {5 518 % Regulate the TAA reaction signal pathway [37]
A LR s K Vs ins ]
AFBI1.AFB2  AFB3 . AFB4 . AFB5 R unknown > TETIEFTE AR S proteins act together to regu [39]
ate auxin response
X ABA DL F 15 3% Wi i £ 08 45 4 R B2 5 LR O 19 SR M Nega-
MAX2(More Axillary Growth 2) LRR tive regulation of ABA and osmotic stress response. thereby enhan- [41,64]
cing the resistance of Arabidopsis
?EAIFCI;IPPI’R()TQIN IA)BA_RESP( INSE %1 unknown IEP ¥ ABA {5518 % Positive regulation of ABA signal pathway [43]
SA [ B B A A2 ok T e oulati A sio-
SLY1(SLEEPYD) S unknown TE GA {55 % S & 4% il 1E I8 45 /E FH Positive regulation of GA sig [49-51]
nal pathway
S e TN . )
COTI(Coronatine insensitive 1) LRR VAT JA B 3 Y ) R 3K Regulate the expression of the JA re- 154 51
sponse genes
EBF1 .EBF2 LRR I AR I 78 45 N7 Negative control factor of ethylene pathway [56]
T T = . .
DOR (drought resistance) A unknown S48 LM IF () Wit 5 PE Negative regulation of drought tolerance [57-58]

AtPP2-Bl11

AtTRI(At3g47550)
AtFBP7(At1g21760)

AT5G15710

At2g02360

CPR30

R4 unknown

BEAR P
Zinc finger zipper

A% unknown

K unknown

Nictaba-like

K unknown

in Arabidopsis

Xof T MR A R AR R S R i 2 5 ABA (RS R
Negative control drought tolerance, improve salt stress resistance,
participate in ABA signal pathway

i )37 5 Bk 38 JZ W Responses to salt stress

Z: 59895 5 i3 & Participate in regulating the temperature process

Z 57 I I+ %t #4809 Bt 2 B Involved in stress response to
heavy metals of Arabidopsis

2 5K 1 BR & 42 A 5 1ML 9§10 I W Participate in plant disease

resistance mediated by salicylic acid pathway

70 5] 5 15 400 B 77 O PL SR 1 Negative regulation of Arabidopsis resistance

[11,44,59]

[60]
[62]
[63]

[65]
[66]

T LRR 78 58 2 5 42 45 4 5 Keleh 78 Keleh 5552 258 3 5 LZ 7% 58 G B 1 5 45 149 48 s FBD /R FBD £ 19 350

Note: LRR represents leucine repeat domain; Kelch represents Kelch repeat domain; LLZ represents Leucine zipper domain; FBD repre-

sents FBD domain.
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