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Coordinated Expression of Source and Sink Genes Involved
in Lipid Biosynthesis and Accumulation during
Camellia olei fera Seed Development
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Abstract ; The objective of this study is to explore the relationship between lipid biosynthesis and expression
of source and sink genes during Camellia olei fera seed development. The line “MY003” with high oil con-
tent in the seeds and the line “MY008” with low oil content in the seeds were selected as sample trees.
These seeds were harvested at June 2, July 4, August 5, and September 3. The oil contents in the seeds
were determined by the method of chloroform methanol. The differential expression of source gene
(GPD1) and sink genes (DGAT1 and DGAT?2) involved in lipid biosynthesis between high and low oil con-
tent lines were determined using qRT-PCR. and the effects of these three genes on lipid biosynthesis and
accumulation were analyzed. The results showed that: (1) the oil contents in the seeds of two lines were in
a gradual upward trend (0.16% —24.1%), and it began to rise rapidly after July 4. The oil contents in the
seeds of “MY003” were higher than that of “MY008” at all stages; (2) The peak values of GPD1, DGAT1
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and DGAT?2 expression in the seeds of “MY003” were significantly higher than that of “MY008” during
seed development. The expression of DGAT1 and DGAT?2 still appeared peak values after the high level
expression of GPD1, but the peaks of GPD1 gene appeared in the early period of seed development, and
the peaks of DGAT1 and DGAT2 genes appeared in the later period of seed development. The high expres-
sion of source gene GPD]1 contributed to promote the TAG precursor G3P high synthesis efficiency in the
early of seed development, and the high expression of sink genes DGAT1 and DGAT accelerated high TAG
accumulation in later period of seed development. There were positively correlated relationships in expres-
sions among GPD1, DGAT1 and DGAT?2 genes. Thus, the coordinated expression of source gene GPD1
and sink genes DGAT1 and DGAT?2 resulted in the lipid biosynthesis and accumulation in C. oleifera

seeds. These results could provide scientific bases for studying on molecular mechanism of lipid biosynthe-

sis in the seeds of C. olei fera.
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Fig. 1 Morphology and color of fruits and seeds of
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Table 1 Gene names and real time fluorescent quantitative PCR primer used in this study

FE N R P 5|4 jl i s 53’ . fF
A(l‘_lefleﬁ Ak 51 ¥ £ %) Primer sequence(5'—3") i‘};ir‘ kEZl
~ Protein name . . . gmen
name 1E M 54 Forward primer JZ 1 59 Reverse primer length/bp

CoEF1 ¢ SEMRPT 1o CATGATCACTGGTACCTCACAG — CAAGGGTAAAGGCAAGCAAAG 128

Elongation factor 1-alpha
GPD1 N H‘q{ﬂi’g’%ﬁﬁmﬂﬁﬂ% 1 ACGGGTTGGAAATGGGAAATA CCTTGACAGACGAGAACAGAAG 99
Glycerol-3-phosphate dehydrogenase 1
DGATI Bl AR A A il 1 GACGATGTAACCGTTCTTGCG  TTGGCTGCGGCTGCTGT 178
Diacylglycerol acyltransferase 1
DGAT2 — PR K e B il 2 TGGAAGCCTGATGGGAAAC ATGCATTGGACGGTGATAGG 111

Diacylglycerol acyltransferase 2
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Fig. 2 Changes of oil contents of lines “MY003” and
“MY008” during seed development
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Fig. 3 Expression differences of GPD1, DGAT1 and DGAT?2 genes in the C. olei fera seeds of “MY003” and “MY008”
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