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Prokaryotic Expression and Stress
Tolerance of E. coli Expressing GhVHA-A Gene from Cotton

LIU Na, NI Zhiyong, RUI Cun, LI Juan, CHEN Quanjia, QU Yanying"
(College of Agronomy, Key Laboratory of Agricultural Biological Technology, Xinjiang Agricultural University, Urumgi
830052, China)

Abstract: In order to further verify the function of cotton GAVHA-A gene, we constructed the GRVHA-A
gene into the prokaryotic expression vector pET28a and induced by IPTG in E. coli BLL.21 (DE3) for resist-
ance analysis. The results indicated that: (1) semi-quantitative RT-PCR analysis showed that the expres-
sion level of GRVHA-A gene in cotton seedlings was induced by dehydration and salt stress. (2) A 1 872
bp coding region was ligated into the prokaryotic expression vector pET28a. The prokaryotic expression
vector pET28a-GhVHA-A was successfully constructed. The SDS-PAGE electrophoresis results show that
there was a specific protein band at about 70 kD, which was identical with the expected molecular weight
of the recombinant protein. (3) The resistance of recombinant bacterium BL21 (pET28a-GhVHA-A) to
PEG6000 (20%) and NaCl (0. 5 mol/L) was significantly higher than that of the control strain BL21
(pET28a), and indicating that the expression of GRVHA-A gene in E. coli can enhance the resistance of
the strain. The results provided a theoretical basis for the application of GAVHA-A gene in plant stress-re-
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sistant genetic engineering.
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Fig. 1 Semi-quantitative RT-PCR analysis of GRVHA-A expression under abiotic stress
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Fig. 3 Effect of induction time with IPTG on
expression of GhVHA-A protein
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Fig. 4 Effect of final concentration of IPTG on

expression of GhVHA-A protein
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Fig. 5 Effects of GhVHA-A over-expression on protection of E. coli against injury under abiotic stress
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Fig. 6 Detection of ODgy, value of recombinant strain and control strain in different stresses
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