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Procaryotic Expression of HCUKPP from Halostachys caspica and

Analysis of Abiotic Stress Tolerance of the Recombinant Bacteria
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Abstract; The recombinant strain Escherichia coli BL.21::pET30a-HcUKPP was obtained by the method of
prokaryotic vector construction after cloning of unknown functional peptide Hc-UKPP gene, and then test-
ed its tolerance under different abiotic stresses. The results revealed that open reading frame(ORF) of the
gene was 243 bp, the molecular weight of the recombinant HcUKPP was approximately 15 kD. In addi-
tion, the expression of HissHcUKPP fusion protein could be induced with different concentrations of iso-
propyl B-D-1-thiogalactopyranoside (IPTG) for 4 h at 37 C. Furthermore, the growth of recombinant
strain E. coli BL21::pET30a-HcUKPP have shown obvious advantages under treatment of different con-
centrations of NaCl (100—900 mmol/L), polyethylene glycol (2.5% —20% . PEG 6000) and methyl violo-
gen (25—200 pmol/L). Especially under the condition of 500 mmol/L NaCl, 10% PEG 6000 and 75 pmol/L

methyl viologen for 12 h, interestingly, recombinant E. coli BLL21 showed significant advantages, their
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growth reached 1. 81, 1.47 and 3. 48 fold of control bacteria respectively. Overall, the H-UKPP gene of

Halostachys caspica can significantly improve tolerance of recombinant E. coli BLL21 under different abiotic

stresses, which proved that the HCUKPP is a kind of newly discovered polypeptide in response to abiotic

stress.

Key words: Halostachys caspica; unknown functional polypeptide; prokaryotic expression; recombinant

Escherichia coli ;abiotic tolerance
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TATATGCGTACTAGGTGGCT-3", EcoR [HI F {514
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JF 9 LX) 58 4 — 3L
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1. DL500;2~12. HcUKPP %7513, BA M X} B8
1 HcUKPP JH# PCR 435 45
1. DL500; 2—12. HcUKPP gene; 13. Negative control
Fig. 1 Amplification of HcUKPP gene with PCR
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F B X EE A Y 38 A A2

1 2 3 4

5000 bp —

1000 bp—»

200 bp —

1. DL5000;2~3. MGk pET30a- HCUKPP 2
EcoR T Fl Hind T MEEY) ;4. FALFKL pET30a- HCUKPP
B 2 T4 Bk pET30a- HCUKPP {4 U1 % 5
1. DL5000; 2—3. Recombinant plasmid pET30a-HcUKPP
digested by EcoR | and Hind Il 5 4. Recombinant
plasmid pET30a-HcUKPP
Fig. 2 Identification of recombinant plasmid pET30a-
HcUKPP with double-enzyme digestion
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A. SDS-PAGE %3 #f pET30a-HcUKPP Bl 4% 14 ;B. HissHcUKPP gl & % 1 ) Western blot %5 ;1. & [ Marker;
2. E.coli BL21::pET30a-HcUKPP i 503 3. 0.1 mmol/L IPTG; 4. 0.4 mmol/L IPTG; 5. 0.7 mmol/L IPTG;
6. 1.0 mmol/L IPTG; 7. 1.3 mmol/L IPTG; 8. 1.5 mmol/L IPTG; 9. 2.0 mmol/L IPTG
3 His-HcUKPP H 4 & H 175 5 % 15 K45 20 47
A. Expression analysis of recombinant His-HcUKPP protein; B. Identification of recombinant His-HcUKPP protein by Western Blot;

1. Protein standard marker; 2. Un-induced E. coli BL21::pET30a-HcUKPP; 3. 0.1 mmol/L IPTG; 4. 0.4 mmol/L IPTG;
5. 0.7 mmol/L IPTG; 6. 1.0 mmol/L IPTG; 7. 1.3 mmol/L IPTG; 8. 1.5 mmol/L IPTG; 9. 2.0 mmol/L IPTG

Fig. 3 Identification and expression analysis of recombinant His-HcUKPP protein
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Kl 4 HAHE E. coli BL21:1pET30a- HCUK PP FER [/ AR A= ¥y Jpria & A= 1 i £k
A—C. Strains growth under various abiotic stresses for 12 h; D—G. Growth of the recombinant E. coli
BL21::pET30a-HcUKPP under different abiotic stresses
Fig. 4 Growth curve of recombinant strain E. coli BL.21::pET30a- HCUKPP under different abiotic stresses
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