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Research Progress of circRNAs in Plants

YUE Huifang"*?, REN Yongzhe'**, WANG Zhigiang"**, XIN Zeyu"*?, LIN Tongbao'**"
(1 College of Agronomy Henan Agricultural University, Zhengzhou 450002, China; 2 Collaborative Innovation Center of Henan
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Abstract; circular RNA (circRNA) is a group of endogenous non-coding RNA with closed loop structure,
which widely and very stably exists in all eukaryotes. It has the features of construct stability, sequence
conservative and tissue-specific expression. Prior studies have discovered that circRNAs could act as mi-
croRNA (miRNA) sponge to regulate the expression of them. Besides, some circRNAs could regulate
gene expression by interacting with proteins. Some studies have shown that circRNAs are not only partici-
pated in physiological processes, such as plant hormone signal transduction, but also play an important
role in the process which response to biological stress in plants. In this paper, we reviewed the classes and
biogenesis of circRNAs, as well as the function of circRNAs. In addition, we discussed the undiscovered
issues and the meanings of existence about circRNAs. As research continues, we believe that it can provide
theoretical reference for the formation mechanism and gene regulatory networks of circRNAs in plants.
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RNA-seq 4341 & BLAE 75 T B AT 2y, BB R0 L /)
BURI NS circRNAs BB 5 SR 610 i
13X ] 8 — A AE TR R 4 . il JLARTE
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1Y cireRNAs, H AR ) 75 18 (14 Ty et I 16 32 W 17
KT
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T IE 8] 8 407 2 30 A7 78 S 0] 59 422 , 3 R Al A8 (4 52 [n]
BIERE L B T circRNAs, H T circRNAs 43 T &
B PR A 5 RNA BRI R (ribonu-
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TEHE WS R BLAE AR R N A AR K Y cireR-
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1 circRNAs i il
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at) & B N & F circRNAs, X FR ciRNAsH 4 =
KA T 5 A F 5 R ALY cireRNAS (ex-
tron-intron circRNAs), Bl EIciRNAs" , & ¥ {5
BE T B, cireRNAs R0 28 & 11 bl 5 9 Fh 1k
FRBE T 2B ZREPE

CiRNAsUXA N & 7) 5 RNA B5 8 11 455
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BbER UISnRNP 25 5 JF il &2 & (A i — 22 5 RNA
REHG I 45612 3F B A B % 5% 5 cireRNAs (U F
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gene
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linear splicingl ‘ back-splicing
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mRNA
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P4z b #2 b A 1 0 BT 4 A2 i mRNAs, Ab i 538 2o
S B 458 B circRNAs
1 circRNAs 5 mRNA JE 57 X 512

circRNAs are most commonly produced from back-splicing

events, while mRNA from linear splicing events
Fig. 1 The difference between the formation
of circRNAs and mRNA
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N B ) ELANEC T 5 91 B 3 BE R ORIk E K
P B YIS a5 HE YD BR 93 AR 5 50 3 . ot
b Ivanov 454 78 28 dU BiF 58 & B, 5 4k RNA
FAEL BN A T BB circRNAs il 3 - F &
J2 18] H.#p P> %] (reverse complementary sequences,
RCMs). it — 50 A& BLiX L8 N & T RCMs Xt
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DAI2H DA A miRNA [ 25 4 37 5, (5N WY Af 25 5
PSR B . A W5 K ER 43 cireRNAs B9 42 5L
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