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Drought Tolerance of DELLA Proteins Deficiency in Arabidopsis
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Abstract: To explore the effects of DELLA protein deficiency on drought tolerance in Arabidopsis, we
treated DELLA proteins deficient mutant dellaby drought stress. The survival rate, germination rate, wa-
ter loss rate, and contents of proline, soluble sugar, and malondialdehyde were measured. Meanwhile, the
gene expression patterns of the late embryogenesis abundant protein coding genes LEAs, which play im-
portant roles in dehydration protection of plant cell, and ABA responsive genes, such as LOX3, COR150,
and COR413, were investigated by qPCR. The results showed that: (1) after 21 days of drought stress
and re-watering treatment, the survival rate of della mutant was significantly higher than that of wild type
Ler; (2) the germination rate of della mutant was markedly higher than that of Ler on 1/2 MS with man-
nitol; (3) the water loss speed of leaves detached from della mutant was distinctly slower than that of
Ler; (4) the contents of proline, soluble sugar, and malondialdehyde in della mutant were lower than that
of Ler; (5) the up-regulated expression of LEA genes in della mutant was higher than that of Ler, while
the up-regulated expression of ABA responsive genes was lower. These results suggest that the deficiency

of DELLA proteins improves the drought resistance in Arabidopsis.
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Table 1 All primers used in this study

5|9 % ¥ Primer name

2| 7% %1 Sequence (5'—>3")

2 2% Rk Reference

At2g03850F CCGACAGCCGTCAAAGGT [10]
At2g03850R GCATCATCGAGCCATTTGG [10]
At2g36640F GAAGGCGTCGGATCAAATGA [10]
At2g36640R TCATCCATCCGTCCAACGT [10]
At3gl7520F GGTTTGGTTATGGTATCTTTGGTACTT [10]
At3gl7520R CGATCGTAGCTTGGACACAACA [10]
LOX3-F TGCCGATCTAATTCGCAGAG [12]
LOX3-R GTTCGGGTTTGGATAGTAGC [12]
COR15b-F AAAGTGACGGCAACATCCTC [12]
COR15b-R CTCAGTCGCAGTTTCATTGG [12]
COR413-F GTGGAGAAGCGGCGAAAGAG [12]
COR413-R GGTGCGTGGAGAGCGAATAG [12]
GAPC-F ACCACACGGGAACTGTAACC [7]
GAPC-R GGCTATCAAGGAGGAATCCG [7]
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%% indicate significant differences P <C 0. 01, the same as below
Fig. 1 The effect of drought stress on survival rate
of Ler and della mutant
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Fig. 2 The effect of drought stress on germination rate

of Ler and della mutant
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Fig. 4 The effect of drought stress on material contents

of Ler and della mutant
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Fig.5 Gene expression patterns of Ar2g03850, Ar2g36640, and At3g17520
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Fig. 6 Gene expression patterns of LOX3, COR15b, and COR413
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