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Effect of Exogenous Salicylic Acid on the Metabolism of

Proline in Jatropha curcas Seedlings under Salt Stress
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Abstract: Hydroponic experiments were carried out to study the effects of exogenous salicylic acid (SA, 0
—2.0 mmol « L™") on the metabolic mechanism of proline in Jatropha curcas seedlings under salt stress
(200 mmol « ™' NaCl). Seedlings of J. curcas under salt stress were treated with SA, and the content of
proline, the activities of the key enzymes of proline metabolism as well as the expression of proline metabo-
lism-related genes in leaves of J. curcas seedlings were measured. The results showed that: (1) the exoge-
nous SA (0.9 mmol « L™!) treatment led to a significant accumulation of proline in J. curcas seedlings un-
der salt stress. It also induced almost immediate and rapid increase of activities of the key enzymes A'-pyr-

roline-5-carboxylate synthetase (P5CS) and ornithine aminotransferase (OAT) of proline biosynthesis,
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and up-regulated JcP5CS and JcOAT expression. (2) SA decreased the activity of proline dehydrogenase
(ProDH), a key enzyme of proline degradation, and inhibited JcProDH expression. (3) The SA treat-

ment also increased tissue vitality, decreased the content of the lipid peroxidation product malondialdehyde

(MDA), and alleviated electrolyte leakage in J. curcas seedlings under salt stress. These results showed

that the SA-induced proline accumulation in the J. curcas seedlings under salt stress might be a combined

result of the activation of glutamate and ornithine pathways of proline biosynthesis and the simultaneous

inhibition of the proline degradation pathway. In addition, exogenous SA treatment can enhance salt toler-

ance in J. curcas seedlings, and proline might be a key factor in this increased salt tolerance.

Key words: Jatropha curcas; salt stress; salicylic acid; proline; metabolic pathways
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Table 1 Primers used in this experiment
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Actin HMO044307 GACTACTTACAACTCTATT ACCTTAATCTTCATACTG 159
JcP5CS GU358610 ACTTATTGGACTCGTGACAT ATTGCTGCCTCTTGGAAT 91
JcProDH KF879446 GTGTAAGGAGATTGAATGAG CAGAAGATGAAGGAAGAGA 144
JcOAT KP313720 GAGCCTTCTATAATGATAA CAACAAGAGACAATAATG 184
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Fig.1 Effect of exogenous SA on proline content of

J. curcas seedlings under salt stress
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