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Effects of Elevated CO, Concentration on Photosynthesis Characteristics

and Biomass Allocation of Lycium barbarum Seedlings

GUO Fangyun, HA Rong, MA Yaping, CAO Bing”~

(School of Agriculture, Ningxia University, Yinchuan 750021, China)

Abstract: To explore the effects of elevated CO, on photosynthesis characteristics and biomass allocation in
Lycium barbarum. With L. barbarum seedlings as research materials, we applied open top chamber
(OTC), afacility to control changed CO, concentration to simulate natural environment in experiment. We
conducted three gradients of CO, concentration, the control group is (3802 20) pmol/mol (CK) , which is
ambient CO, , and elevated was (570%20) umol/mol(TR1), (760+20) yumol/mol(TR2). The effects of el-
evated CO, on photosynthesis and biomass allocation of L. barbarum seedlings were assessed by net photo-

synthetic rate(P,) , light response curves, CO, response curves and dry weight during seedlings exposed to
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all three treatments (CK, TR1, TR2) after 90 and 120 days in 2017 and 2018. Results showed: (1) when
treated for 90 days in 2017, the TR1 and TR2 in P, of L. barbarum seedlings were increased significantly
than that of control (P<C0.05). After 120 days, the P, of TR1 was decreased significantly compared with
CK (P<C 0.05). While P, of TR1 was 4. 77% lower than CK when we repeated the test after 90 days in
2018 (P>>0.05). The treatment of TR1 and TR2 was higher in P, than CK after 120 days, but the differ-
ence between them was not significant (P>>0.05). (2) With the rising of CO, concentration, it is similar
that the intercellular CO, concentrations (C;) of TR1 and TR2 treatment were soared respectively than am-
bient CO, in 2017 and 2018 (P<C0. 05). With the time prolonging until 120 days, the stomatal conductance
(G,) of TR1 and TR2 dropped conspicuously than that of CK (P<C0.05). No difference in water use effi-
ciency (WUE) in 2017, but it raised obviously than control after 120 days in 2018. (3) At 90 days, the
light saturation point and CO, saturation point of treatment TR1 and TR2 were all rising than control,
which was maintained in 120 days,but the CO, assimilation rate of TR2 was declined. (4) The biomass al-
location of L. barbarum seedlings increased signally in its aboveground with CO, rising, thus less allocated
in underground organs (P<C0.05). We concluded that slightly elevated CO, could promote the photosyn-
thesis of L. barbarum seedlings, as a result of photosynthesis, the biomass accumulation in L. barbarum
seedlings was tend to its aboveground organs, while underground was reduced remarkably. With the con-
centration and incubation time extending, the photosynthesis in L. barbarum seedlings showed a down-
regulation trend, which revealed by its P,, G, and photosynthetic CO, assimilation rate decreased.

Key words: elevated CO, concentration; Lycium barbarum ; photosynthesis characteristics; biomass allocation
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Table 1 The light saturation point (Lg) and light compensation point (L¢p) of L. barbarum seedling under
elevated CO, concentration condition
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Fig. 5 The CO; response curves of L. barbarum seedling under elevated CO, concentration treatment
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Fig. 6 The biomass distribution in L. barbarum

seedling under elevated CO, concentration condition
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