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Abstract: In this study, Riesling annual nutrition bag cuttings were used as experimental material. We
conducted artificial climate chamber hydroponic experiments to investigate the effect of various concentra-
tions EBR (0. 05, 0. 10 and 0. 20 mg/L) pretreatments on active oxygen, antioxidants, antioxidant en-

zymes activities and osmotic adjustment substance contents in grape (Vitis vinifera L.) seedlings with
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PEG simulating drought stress, revealing the mechanism of drought resistance of EBR on grape seedlings

under drought stress. The results showed that: (1) compared with the growth control in normal, simula-

ting drought stress significantly increased the contents of anion radical (O, ), hydrogen peroxide (H,O,)
and malondialdehyde (MDA) in the leaves of grape seedlings. Compared with the PEG treatment alone,

different concentrations of EBR pretreatment could reduce the contents of O, ", H,O, and MDA in leaves.
(2) Compared with the growth control in normal, the contents of ascorbic acid (AsA) and reduced gluta-
thione (GSH) were significantly reduced in PEG-treated seedlings. Compared with PEG treatment, EBR
pretreatment significantly increased AsA and GSH contents in grape leaves, and 0. 10 mg/L EBR treat-
ment was the best. (3) Superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate
peroxidase (APX) activities in grape seedling leaves showed a trend of rising first and then decreasing in
PEG treatment alone and it remained basically unchanged under normal growth conditions. Moreover, the
activities of SOD, CAT, POD and APX in EBR pretreatment were always higher than those in PEG treat-
ment. (4) The contents of proline and soluble protein in PEG treatment alone was higher than that growth
control in normal. Different concentrations of EBR pretreatment could significantly increase the contents of
proline and soluble protein in grape leaves during middle and late stages of drought stress. It was showed
that under drought stress, EBR pretreatments could effectively reduce the excessive accumulation of reac-
tive oxygen species (ROS) and the increase of membrane lipid peroxide level induced by drought stress
through improving antioxidant defense system activities and osmotic adjustment substance contents in the
leaves of grape seedlings, resulting in improving the drought resistance of wine grape seedlings. Among
these, 0.10 mg/LL EBR pretreatment got the most remarkable effect.

Key words: V. wvinifera L.; 24-epibrassinolide (EBR); drought stress; antioxidant system; osmotic ad-
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[y B EBR TAb#E ¥ W 42 & T 4 i ik b SOD
TPE X SR A S BR fgfg it m TR T E
K H R A AL SOD,CAT Fl APX 1Y 3 . B
LT A W) AR PUE BE raa BE  as R -8, &
BN EBR &b P A8 %38 i 42 /5 SOD 13 Mok 4 2L
Bij 1k O, " Bk 7 A= 32 e A 28 401 v R T 5 e
WfE 1. CAT.POD F1 APX i 3 B4 W J2& 4> f#
AILE . Li YRS R WL S G N BR AE 6%
&2 38 T B #E (Robinia pseudoacacia) & Bt
AL (SOD, POD F1 CAT) % 1 . 4 35 H i 5 fig
WIRE 3 Y S ER AR N 1A BT €5 ) ST R
AMNERE N 28-HBR e 58 T 2K (Zea mays L.) 4
SOD.POD.CAT F1l APX § 7 ¥ . i 2 B A% £5 W
AR EEEER . RKBH, B AR
PR # % 4h i 7 SOD,CAT,POD 1 APX i 1
AR, T R ha TN 2% FIHE TR
A, A Bl S 38 X B AH L . EBR T Ak B
% 4 SOD,CAT.POD F1 APX i PE#8 A A
(] 2 B 38  ax SR WA ) B B HLA N R B P g L T
3 Ao O B AR A T T T P R B 4 G 32 AR AR
1M AR EBR A58 52 98 755 5t 481k 7 58 1 58 Al R 4K
Fo TS WA rfe . i B EBR &b B S 0 A 1L 1
T P T 8 0 T R R Ao K A e DR A B SR N/ B
B R S 0 Sk & RN/ B0 Ak ok 52 R
3.4 SMNEEBRSTEMETHISHESERTY
5: PSS

5% T R A S T 5 38 0 R A B AL
il e T2 g | AR P K 1 B2 3 e AE 4 0
b KA AR 2298 33 R 4 7 O G2 fifk 300 55 3 431
Nl R SR A R R R L I R
TN T2 A AE 1Y 95 325 4 755 0 I8 s S 7K 1 e K
MR ILIRZ — KA BET R . TEM A& A
i 7] 75 24 18 35 B R AR G AN ROS T BRIV
B 3% VR Y 2 A e 1 T 5 e A BEAL R Y 32
Sy AR BT RH AL M SR b EE A B AR R A B T

FLYI R 3 P8, IR 3T 9 BT 5 2% B L A0 UR it
HBL(28-Homobrassinolide) fil EBL (24-epibrassin-
olide) i ¥ T Hi 4 h ABA . H 2 . FIF 5 5o A il
R R, BT T 5 X B T4
EUYL SRR MATSY & B EBR JE A ScE OB A
A R D A2 A [+ 300 %5 A 400 A A B S 52 i 5
TEW T E AR &R B R AR
Brh, 5O E AR A MR FE L T 5 B T A
A AR R A S R, I R T
5030 4 BRAH e EBR i ib 2300 3E— 2D i 25 57
A S IR R AN AT PR Y L UL EBR g
M Ao 4 5 A 4 B TR B R RSN RER Z T
BBl 30 X A ) 3 R 1

SR EBR AR m 1T 5 R A 4 i e
S TG P BT AR T B e % 3 AT ) 5 il
AR PR Al R D & L BT R T
PESA B 5 TR T MDA & &, 08 2% 1 % 4h i
(R AL A0 07 A A N 8 B SR A AT 4
8 SR P PR — 20 AR T 50 A 4 4 B R L
B BRs X $2 i # 49 40 i T 48P0 0 BA B AEH] .
JEHT AT ST R W, BR O w5 1 1) X BOR i R R e M
e I T 32 PR T 0 5 S N R ABA S & 1 T 5
B, Zhang VU HRGE AR WL 7E T R E R
EBR sl 4% T 5 Wp 38 3 B AR5 AR ik 4 Ak 32 45 — 3 43
Wit T ABA T EN . H ABA 25 BRiER®
BT R a5z {8 BR A2 5 ABA %S0T %
Jip 38 T A2 P s BR AR B L BE P 7 T vpl4 R R
K%k IR G 5 A AL oK I R ABA AR G
fHE NCED, T BRs 549 A4 BACH A C R K
BRs 44 iy ] 49 401 i it T 5 00 MLEL, 2 05 6K AT 5
38T A e R BRI 2y 7K & BRs BYAE S
g mpp it — L HA.

4 45 8

TR E A A L W AR O, L HL O, A
MDA &t Fh & 5 10 76 T 50038 444 F L EBR fiish 3
AFEAR O, JH,O, il MDA ¥ & &, 48 25 18 3% 5
Yy o W A R NPT  PEAR  [RI R T A A
MR B Ak & 4 SODLCAT.POD I APX 9 I
AR A A TR BT I AR R A D R A b H R ) o
o T TR A 40 B R P SRR . B EE Sl 0. 10
mg/L EBR Ab PR 5 o0 2 .
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