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Effect of Alternate Respiration Pathway on Chlorophyll Fluorescence Activity

of Angelica sinensis Seedlings under Low Temperature Stress

ZHANG Mudan, DA Mengting, RAN Ruilan, SAINAO Wangqing, JIA Lingyun, FENG Hanging'"

(College of Life Science, Northwest Normal University, Lanzhou 730070, China)

Abstract: We studied the effects of alternate respiration pathway on chlorophyll content and fluorescence
characteristics of Angelica sinensis seedlings by pot experiment in greenhouse to explore the role of alter-
nate respiratory pathway in the response of A. sinensis under low temperature (4 C and —7 C). It was
found that, with the decrease of temperature and the increase of low temperature time, the chlorophyll
content, actual photochemical efficiency [ YCII )], photosynthetic electron transfer rate (ETR), and pho-
tochemical quenching coefficient (ql.) of A. sinensis decreased, while the non-photochemical quenching co-
efficient (NPQ) was increased. Meanwhile, low temperature stress also resulted in a significant increase in
the alternate respiratory capacity of the A. sinensis seedlings. Under low temperature stress, compared
with the A. sinensis seedlings without chemical treatment, the chlorophyll content, Y(I[ ), ETR and qL
of A. sinensis seedlings pretreated with the inhibitor of the alternate respiratory pathway [1 mmol « L™*
salicylhydroxamic acid (SHAM) ] decreased further, but NPQ increased significantly, and the lower the
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temperature was, the greater the range of rise and fall was. These results indicate that low temperature

stress significantly inhibited the chlorophyll synthesis and photochemical properties in the leaves of A.

sinensis seedlings, and the alternate respiratory pathway has protective effects on PS|| photochemistry and

chlorophyll bio-synthesis of A. sinensis seedlings under low temperature stress.
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