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Abstract: Thioredoxins are a kind of low molecular weight redox proteins widely existing in plants, which
play important roles in the developmental regulation and stress responding processes in plants. Two wheat
(Triticum aestivum L. ) cultivars, ‘Chinese Spring” and ‘Luohan No. 2’7, were used in this study. A thi-
oredoxin gene TaTrxh9 was cloned from common wheat by using RT-PCR. Bioinformatics analysis was

performed to define the chromosomal localization and sequence characteristics of TaTrxh9, and its expres-
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sion patterns responding to osmotic stresses were detected by qRT-PCR. The results showed that; (1)
TaTrxh9 gene was successfully cloned, sequence analysis indicated that TaTrxh9 was located on the short
arms of group one chromosomes, and three homoeologues of the gene were designated as TaTrxh9-1AS,
TaTrxh9-1BS and TaTrxh9-1DS, respectively. (2) Four introns were detected in each of TaTrxh9 ho-
moeologues and a large number of polymorphisms were detected in introns among homoeologues, while the
coding regions of homoeologues were highly identical (>=>98%) and encoded an identical protein sequence
with the length of 131 amino acids. Characterization of TaTrxh9 protein indicated that a TRX-family con-
served domain and a CXXC redox active site was detected, and the TaTrxh9 was predicted to have a typical
spatial structure of thioredoxin, including a peripheral framework composed of 4 helixes and a central axis
composed of 5 antiparallel 8 sheets. (3) gqRT-PCR analysis showed that TaTrxh9 gene was down-regulated
in leaves under drought stress, while initially increased and then declined in roots. Under salt stress, no
significant response of TaTrxh9 gene was detected in leaves and only a transient induction was observed in
roots. The expression pattern of TaTrxh9 under treatment of ABA is similar to that under the drought

stress. It was speculated that the responding process of TaTrxh9 gene to drought stress was associated

with ABA-mediated regulation of gene expression.
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Table 1

Primers used in this study

5|4 Primer 2% %1 Sequence (5'—>3")

& Function

c¢TaTrxh9-F CCAGGCTTATCTTCTCCGTCTC
c¢TaTrxh9-R

qTaTrxh9F-A
qTaTrxh9F-B CGATCCCAGGCCTTCAGGTAC

qTaTrxh9F-D TCCGATCTCAGGCCTTCGGGTAT

gTaTrxh9-R ATGACACGGCATGGCCCACA
TaActin-F GTTCCAATCTATGAGGGATACACGC
TaActin-R TAGCCGTTTCCAGCTCCTGC

CAAGCTGGCTCTGTTCTAATTCTG

CATTCAGCGATTCCTGCCAGTGTC

FE[H 5 B Gene cloning

A 58 % Gene cloning

A FEHHR 259 A genome specific primer

B3N A% 5514 B genome specific primer

D I HFN AR R 5 ¥ D genome specific primer

18 151 % Common primer

B-WL3h 2 3 M 45 5 514 B-actin F gene specific primer

B-WLzh & [ HE 5 519 B-actin F gene specific primer
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FI¥ M cTaTrxh9-F fl ¢TaTrxh9-R, ] LA-Taq
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s,60 C 305,72 C 2 min,30 ME¥ ;72 CJ5 kA
10 min, 4 CIRFE. 120 B M B i i Wk (150 V7, 30
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B A,
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JH Snapgene #{F # 47, W2 AE T T 14 43 B 38 ok
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ugent. be/webtools/plantcare/html/) ¥E £k 4> #f,
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30T
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Fig. A. Cloning of cDNA and gDNA fragments of TaTrxh9 gene(M,;. DL5000. 1. Product of gDNA amplification; 2. Product of

c¢DNA amplification; 3. gDNA fragments recovered; 4. cDNA fragments recovered). Fig. B, Fig. C and Fig. D showed

the identification of recombinant clones harboringA, B and D genome specific fragments, respectively

(Fig. B, Fig. C, Fig. D:M;. DL2000; 1—8. Recombinant clones)

Fig. 1 Cloning of the TaTrxh9 gene in wheat
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Ao fE5'-UTR X3 TaTrzh9-1AS F1 % 2 A4y
[ 50 R AL 11 22 S K, ELPE R B %35 A5 B0 8 bp &b
FETE 18 bp WA (K 2.B) s A i, E g i 1X 3 A HB
o3 6] 5 I ) Oy 9 B — B0, TaTrah9-1BS Fi
TaTraxh9-1DS 5 TaTrxh9-1AS (¥ JF 5 — M 4>
1k 98.5 % 1 99. 2 %, fif H. i T8 RS - fa - Pk A
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TaTrxh9-14S CCAGGCTTATCTTCTCCGTCTCCTCCGACCTCACCTCGCCCCCTCGCCCC6CGGCTTCTG 60
TaTrch9-1BS  CCAGGCTTATCTTCTCCGTCTCCTCCGACCTCACCTCGCCCCCTCGCCCCECGGCTTCTG 60
Talrxh9-1DS CCAGGCTTATCTTCTCCGTCTCCTCCGACCTCGCCTCGCCCCCTCGCCCCECEGCTTCTE 60
TaTrxh9-1AS  GGCTCCTTGGCGCCAAAATCCCCGCTTCCGATCCCAGGCGTTCAGGAAACAAGGGGCCTT 120
B TaTrxh9-1BS  GGCTCCTTGGCGCCAAAATCCCCGCTTCCGATCCCAGGCCTTCAGGAACCAGGGGGCCTT 120
TaTrxh9-1DS GGCTCCTTGGCGCCAAAATCCCCGCTTCCGATCTCAGGCCTTCGGGAATCAGGGGGCCTT 120

TaTrch9-14S  TCATTCAGCGATTCCTGCCAGTGTCAGTTCGCCATGEG6GGCTGTGTGGGCAAGGGTCET 180

TaTrxh9-1BS TCACTGA--------cccncucnnn AGTTCACGATGGEG6GGCTGTGTGGGCAAGGGTCET 162
TaTrxh9-1DS BERENCH------------------ AGTTCACGATGEGG6GCTGTGTGGGCAAGGGTCET 162
A

A. TaTrxh9 By 3 45845 [6] 5 55 K FE 9B AE 43 M1 s B, TaTrah9
FEIH 5'-UTR X8 3 A8 ) Y5 J Al 18] A 2 90 L X 5 22 =
TR R IR B FALE B P R S R 20k L
2 TaTrxh9 B3 R 40 25 X551 53 01
A. Structures of three homoelogues of TaTrxh9; B. Sequence
alignment of 5" UTR among three homoeologues of TaTrzh9;
The black triangle indicates the site of initiation codon and
the black circle indicates the termination codon
Fig. 2 Genomic structures and sequence analysis

TaTrxh9 gene
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A. Amino acid sequence analysis of TaTrxh9; B. Structural model of TaTrxh9 protein;

Triangles and arrows indicate « helixes and B sheets, respectively

Fig. 3 Characteristics of TaTrxh9 protein
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Fig. 4 Expression patterns of TaTrxh9 in wheat under drought (solution of 20% PEG) stress
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Fig. 6 Expression patterns of TaTrxh9 in wheat under treatment of ABA(100 pmol « L™")
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