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Research Progress of ICE1-CBF Pathway and Its Function
in Plant Cold Tolerance and Development
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Abstract: As a major environment factor, low temperature affects the geographic distribution and diversity
of plants, and threats the sustainable development of agriculture. ICE1 (INDUCER OF CBF EXPRES-
SION1)-CBF (C-REPEAT-BINDING FACTOR) signal pathway functions critical roles not only in plant
cold tolerance, but also in plant growth and development. The insight into ICE1-CBF pathway improves
our understanding about how plants balance growth and cold tolerance. In this review, we summarized the
latest advances in research of the sophisticated regulation of ICE1-CBF pathway in cold tolerance, and
mainly discussed the roles of ICE1-CBF pathway in plant growth and development.
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Fig. 1 The ICE1-CBF pathway is fine-tuned at transcript level and translational level
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