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Abstract: In order to explore anthocyanin synthsis regulator genes in Gynura bicolor, we sequenced the
transcriptomes of G. bicolor including leaf and flower in control by Illumina HiSeq 2 500 platform. Then,
8 kinds of synthases such as CHS, CHI, F3H, F3'H, F3'5"H, DFR, ANS, 3GT and 3 kinds of tran-
scription factors such as MYB, bHLH and WD40 were retrieved. At the same time, 8 differential ex-
pressed genes were identified by the RT-PCR. The results showed that: (1) There were 72 unigenes relat-
ed to anthocyanin synthases, in which 12 differential expressed genes including 1 down-regulated F3'H , 2
down-regulated 3GTs, 5 down-regulated F3Hs and 4 up-regulated F3Hs. (2) There were 238 MYBs, 113
OHLHs and 219 WD40s. The differential expressed genes in these 3 kinds of transcription factors were 22,
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16 and 7, respectively. (3) According to transcriptome sequencing, the down-expression trend of these 8

anthocyanin synthesis regulator genes agreed with the testing by the RT-PCR. But the trend multiples of

these differentially expressed genes by these 2 kinds of approaches were different. So this study concluded

that there are many anthocyanin synthesis regulator genes in G. bicolor including leafl and flower, but only

a few of these genes are significantly different. At the same time, the regulation of transcription factors is

more complex than that of synthases.
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Fig. 1 The G. bicolor is in bloom (A) The abaxial

and surface leaves from G. bicolor (B)
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Table 1

The qRT-PCR primers for the 8 selected genes

B| ¥ 5% Primer sequence(5'—3")

45 1D GREE, : :

E 4] Forward 1] Reverse
€31895.0 WS IEH Actin GTAGAGGACCGAATCAATCAC ~— TCACCAGAGCAACAGTAGA
¢23689.0 kA 3- %L H Flavanone 3-hydroxylase ~ TGCCTCCATCATCAACTATT GATACATCTCCGCCTTCC
213170 #kiFA 3- %L Flavanone 3-hydroxylase ~ TAGTATGCGATGGTAACA CAAGGAGTATATTGATATGATTG
¢23278.0  #kif 3-% L F Flavanone 3-hydroxylase  ATTGAATCTTGAGGGTCTGA CAACTCCATTCCTTCTATCTAC
30540, 0 S H M 3", 5F A W Flavonoid 3%, 5" 1o ATTGTATTCGGCAGTT TGTGTCCAGGGTATAGTCTA

hydroxylase
37714. 0 W & 3-O-% 3 B W Anthocyanidin 3-

O-glucosyltransierase CTACTCGCATTGGCTGAA CCATTCGCACTCCTTCTT
€37699.0 HEKNF MYB GCTCACTCTATTCAACAA GTCTCTATCATACACTGC
€29036.0 #%ENN+F bHLH ACTTCTACTCAACTCAACTTCTTC GATGGATACTACAATGGCTCAAT
C36860.0 %% 5% F -+ WD40 CTTCAACAACAGACCGATTC ATAATGGCTCTTGCGACTT

HiSeqTM 2500 ~F- {5 %% S 2 5 00 7 i %o J 34 ) Jt
TREAEIEA T 38 , RO S ok N T332 3k 1P 91 RVER o i 1327
JIT A B o i VS PR T R 91 A 2k o DT AR HRUEE
TR ZEM 7 S AR 1 B L P 7% (unigene) JE

1.2.2 ZhEEERE X 4l y 4R O 75 K 2%
W R FAE 2 rh kR DG B8 HE AT I e S PR B B VR A B
HEAT B ATL PR 00 0 E A 5 S 4 1 R AT B
A% Fe 15 8 (FPKM) 43 1 DA & 8 45 R (Nucleotide)
Fe A K B Ge vt s [l iR A Blast #0F50 i 47 40 OG5
SRR 8 AR RS AR R AT

1.2.3 BEE®ZE A8 ERBCEE RE T
AL L PR A AR B BT 6 R G
R A 564 il (CHS,CHIL,F3H . F3'H,F3'5" H,
DFR. ANS, 3GT) k& % 5 N v (MYB, bHLH,
WDA0) M K F KR K Gt . FERIEET R
LMy fAb i FPKM {H, G231 22 5 3R 58 I A0 ¢
JE R R K L e 4 A NR B 3 vE B A SE R
1.2.4 #HXEEA qRT-PCR 47 ML H KHE
MR A e e s AL e 45 SR N R B 8 N EE E
A A A ¢ 22 5 R IR (R D i##47 gRT-PCR
R, BT EL RNA SR H e s 4100 75 4 5, R HTE T
AR AR A2 AR RNA 19 OD . fd F Aueo/
Aoy LUAE . A48 1) RNA SR Aidlab 24 5] 2 5% 5%
7l & (TUREscript 1st Stand ¢cDNA Synthesis Kit)
WEAT I B AE A B, cDNA 55 %65, [F B 354751 9
A (32 DR qRT-PCR T2 5 ik Z b 2,

2 RSN

2.1 #%BEZREHNRBHEXERAER
2.1.1 EEEXERSGT R R AT T
RERNAHOCAE B it — 2Pl g B R A AU AR

IR F R IBOCER T RE M 7 B P A G &
JCHE LR AR 91 R (R 2), 4 4E 2 & CHS. 2 %
CHI.27 4 F3H.7 4% F3'H .6 % F3'5'H .5 %
DFR.1 % ANS FI 22 %% 3GT; % 5% H - 2 3 A i
570 &5, B0 45 238 4 MYB.113 & bHLH 1 219 4
WD40, HE ST RKZEM b M B AL & FPKM
fE AT, 5350 9 4 F3H .1 4 F3'5'H .2 % 3GT,
22 4« MYB.16 & 6HLH 17 4 WD40 22 3%k H)
BAER . TS REMLT XA M. B 4 5
F3H LR b BL A A, HiAth 5 5% F3H .1 4%
F3'5'H F12 % 3GT # R PN, 7853 RIEHL T
EAH WA MYB.bHLH 1 WD40 4 3 284 7 3%
KRG S b, BREER 4050 0 10 25010 Z5F0 5
Z s FIEFEPRIR R 12 5.6 4cM1 2 5%,

2.1.2 ERREEEHEXANE EEHFREN
R XA, 22 53R 8 W E A U R
F3H.F3'5'H Fl 3GT =26(F 3) . Hp 9 K2 RE
KU R F3H AR K B4 T 336 ~1 431 bp, H
A H R FPKM fE A 1. 68~41. 59, fE 2= i) FP-
KM fH4 0.07~32. 15,iX 86 F3H 7£ NR ¥ & fr
VEBC (7 9 Fh A0 5 8 T (Lactuca sativa) (4 S5 B3 A
) AL Fwl] (Cynara cardunculus) & JK (Cucu-
mis melo) JJEW B & (Dorcoceras hygrometricum) .
N 21 46 (Carthamus tinctorius) Fl[a] H 2% ( Helian-
thus annuus), ZFFXRWEA 1 & F3'5'H, HE
TR 1 700 bp, it R FIE 1 i) FPKM {8 73
2 26. 05 Al 2. 69, NR H 4 2 Bt T B (9 4 F Sy 1]
H%, 2REBBIPRH 2 5% 3GT i, HEZHRKE
Ay R 897 A1 1 615 bp, it i FPKM {H 4351 M 3. 45
1 35. 57, £ 1 FPKM {H 4351k 0 #10. 96, NR
BRI 22 BT DG 4 ) Aol DAy 1) 5 R R B SR
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Table 2 The information of anthocyanin synthesis regulator genes
FER AR e R B 25 5 3 R L R R R B R L R B
Gene type Gene name Gene total Differential expressed genes Up-regulated genes Down-regulated genes
CHS 2 0 0 0
CHI 2 0 0 0
F3H 27 9 A 5
F3'H 7 0 0 0
A il
Synthase F35'H 6 1 0 1
DFR 5 0 0 0
ANS 1 0 0 0
3GT 22 2 0 2
MYB 238 22 10 12
B sk R ¥
Transcription bHLH 113 16 10 6
factor
WD40 219 7 5 2
3 RIMERREBENESTZAABER
Table 3 The information of 12 differential expressed synthases in anthocyanin synthesis
L e :ik i FPKM — " .
I 44 5 Bt K g FI At PR TR T AR R M DG R 4
Gene name 1D Nucleotide/bp M B Leaf % Flower NR matching plant
C23278.0 336 27.21 2.02 W &3 8] Cynara cardunculus
C22346. 1 477 2.64 9.16 B Lactuca sativa
C21317.0 554 41.59 0.25 IR Cucumis melo
C23689.0 681 11.62 0.16 W Lactuca sativa
F3H C22346.0 708 1.68 6.83 B E Lactuca sativa
C23689. 1 817 7.47 0.07 €W & Dorcoceras hygrometricum
C20876. 1 1041 11.50 28.19 JN4L 46 Carthamus tinctorius
C26523.0 1217 14. 38 32.15 B Lactuca sativa
C31518.0 1431 25.10 2.13 [l H 2% Helianthus annuus
F3'5'H €30540. 0 1700 26.05 2.69 i H 3§ Helianthus annuus
c25798.0 897 3.45 0 [61) H 3% Helianthus annuus
3GT
c37714.0 1615 35.57 0. 96 Wil A1 3E 8] Cynara cardunculus
2.1.3 £RRVBBENERETF G HXEMA 3813 F10~56. 473X 28 pHLH £ NR B4 J&2 i It

WIAH S FE S 7 AL HE MYB.WDHLH Hl WD40,
Hrp xS REBERN MYB 3 HFA4 22 4~ (R
4) , A i K BT 502~1 876 bp, i A fil 4k
) FPKM {4 5k 0~47. 80 Fl 0~ 87. 89, jxX 4k
MYB 7 NR %4 FE fir UC e i) 9 F 42 45 7] H 3% (10
SRPBL ) LB (5 AR BRI IR ) L fil A SR B (3 5%
BABEPRIRE) VB R 55 (2 SRR ) AR N 48 (Ger-
bera) f1 3§ 4%, (Chrysanthemum) ; 22 5 F 15 I E K
bHLH # %14/ 16 NG5 . HEHREKEAN T
535~2 010 bp, M FAEH B FPKM {H 535 24 0~

P FF) ) b A 95 1) 2 (7 AR SRR DD B (T AR R
B PR ) FNR LS 6 (2 2% AL A ) 5 22 S 3R Gk L 3
1) WDA0 B sk 147 7 A (GR 6), KB T IR K 4
T1 024~4 053 bp, it Jy FAE () FPKM {8 5351 4
0~7.43 F1 0. 23~16. 21,1x % WD40 7£ NR $( &
VI JT DC JGE A ) P A 456 1) H 25 (5 S5 B R R AR L ol
SE ] FNBE S /NAE T (Spizellomyces punctatus) ,
2.2 HXEREBZEE qRT-PCR 7347

JiA ZRF XD EN 8 DN LL K actin 45|
Y qRT-PCR 525, i 97 4 ih s i it 2 s &
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Table 4 The information of 22 differential expressed MYB transcription factors

s D B HIEHLFPRM T 2 B D R

Nucleotide/bp M B Leaf % Flower NR matching plant
¢37699.0 502 47. 80 0.29 B Lactuca sativa
c27270.0 568 9.49 0.48 BB Lactuca sativa
¢29397.0 777 0 5.36 [a] H 2% Helianthus annuus
c26588. 0 862 7 0.21 0] H %% Helianthus annuus
c25517.0 892 0 56.53 ALV EG Gerbera
€25238. 0 929 1.67 6.77 H # 2 #] Cynara cardunculus
¢21550. 0 948 0.07 2.25 [a] H %% Helianthus annuus
€27570. 0 977 16. 54 1.13 [n) H %% Helianthus annuus
¢33116. 0 983 3.19 6.1 [0 H %% Helianthus annuus
€24227.0 990 5.93 21. 42 95 K Gynura bicolor
¢28062. 0 993 0 87.89 [n) H %% Helianthus annuus
¢c30984. 0 1019 31. 34 0 298 KK Gynura bicolor
¢26346. 0 1025 3.40 0.06 [n) H %% Helianthus annuus
¢23050. 0 1111 5.36 0 [ H %% Helianthus annuus
c27880. 0 1129 1.11 5.49 Hill 45 3% 8] Cynara cardunculus
c28234.0 1143 0.12 8.01 v H %% Helianthus annuus
c26662.0 1190 34,28 3.87 [a] H 2% Helianthus annuus
¢27481.0 1258 29. 90 3.52 WL &) Cynara cardunculus
c31886. 3 1284 15.93 43. 65 W Lactuca sativa
¢19829.0 1407 13. 24 0. 25 B Lactuca sativa
c22266. 1 1618 8.53 0.76 246 Chrysanthemum
€36963. 1 1876 19. 29 2.36 B8 Lactuca sativa

RS 6N ERREBEN PHLHEREFER
Table 5 The information of 16 differential expressed bHILLH transcription factors

B D Bt R FPRM R TC AR B R R LB

Nucleotide/bp M P Leal 4 Flower NR matching plant
c24666. 0 535 9.54 0.52 il 45 3] Cynara cardunculus
€29034. 0 825 0.29 4. 54 0] H %% Helianthus annuus
c27741.0 881 1. 66 6.38 i) H¥% Helianthus annuus
c25164.0 941 8.34 17. 32 B Lactuca sativa
¢29036. 0 1102 38.13 0.81 551 Lactuca sativa
€26127.0 1124 0 14.98 [n) H %% Helianthus annuus
c33314.0 1163 0 4. 87 B Lactuca sativa
¢19501. 0 1225 1.17 4.99 B Lactuca sativa
c23794. 0 1241 10. 24 26.9 i) H 2% Helianthus annuus
c26964. 0 1250 4.16 0.27 il 45 3] Cynara cardunculus
¢26831. 0 1259 8.76 56. 47 [n) H %% Helianthus annuus
¢34976. 0 1279 11. 64 0 [0 H %% Helianthus annuus
c27018.0 1401 2.84 0. 04 [a] H 2% Helianthus annuus
c24733.0 1653 2.21 0.1 BB Lactuca sativa
€33394. 0 1 886 1.76 3.73 B Lactuca sativa
¢33480. 0 2010 6.29 14. 31 BB Lactuca sativa
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Fig.2 The expression trend of 8 differential genes in flower and leaf from Gynura bicolor
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Table 6 The information of 7 differential expressed WD40 transcription factors

2.3 S AN EHEM FPKM &5 qRT-PCR 4 R L&
F3H(C23689. 0) F3H(C21317. 0) \F3H(C23278. 0)
F3'5"H (C30540. 0) .3GT(C37714. 0) \MYB(C37699. 0) .
HHLH(C29036. 0) F1 WD40(C36860. 0) %5 8 KL [H, 4%
A% S0 )7 FPKM {H & gRT-PCR #5 I 2%
AT LE B AT G5 R AR B3R 7)) L3R o 45 B DR A 5

ik FPKM

4t 1D Necltmtide bp : e
/ M Leaf . Flower

€24627.0 1024 0 2.24 BE /NG B Spizellomyces punctatus
€22753.0 1145 0.27 1.58 [ H 2§ Helianthus annuus

33605. 0 1536 3.95 0.32 [l H ¢ Helianthus annuus

32368. 1 1353 3.09 7.51 [ H 2 Helianthus annuus

¢34852. 0 2 251 4.13 8.1 W35 #] Cynara cardunculus
31876.0 2 945 7.43 16. 21 [ H 2 Helianthus annuus

€36860. 0 4053 7.36 0.23 [l H % Helianthus annuus

KT SNERREPAREEMNIELEE PCR 447
Table 7 gqRT-PCR analysis of 8 differential expressed genes

M G B S 4 P RNA-Seq %t E B PCR %5 qRT-PCR

Gene D i Leaf(A) 7 Flower(B) A/B I Leaf(A) 1 Flower(B) A/B
Actin €31895. 0 11.33 11. 99 1.01 21.49 19.99 1.08
F3H (23689. 0 7.47 0.07 106. 71 161.63 0.08 2 020. 38
F3H €21317.0 41.59 0.25 166. 36 4.62 0.11 42. 00
F3H (23278.0 27.21 2.02 13.47 0.49 0.10 4.90
F3'5'H C30540. 0 26. 25 2.69 9.68 4,58 0.08 57.25
3GT C37714.0 35.57 0.96 349.55 8.22 0.14 58.71
MYB €37699. 0 47.80 0. 29 164. 83 18. 66 2.90 16.78
bHLH €29036. 0 38.13 0.81 47.07 2.25 0.10 22.50
WD40 €36860. 0 7.36 0.23 31.74 2.90 0.18 16.11
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