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ammannii and C, plant Kochia prostrata , in 2016 with 52% above the long-term mean precipitation and in
2017 with 1695 below the long-term mean. Plant N and phosphorus(P) contents, and resorption efficien-
cies were measured and analyzed. The results showed that: (1) in the wet year (2016), warming led to in-
creases of 14.32% in green leaf N, 25.45% in senesced leaf N, 17.97% in green leaf P, 46.47% in se-
nesced leaf P, and the N and P resorption efficiency significantly decreased by 9.41% and 16.99% (P <<
0.05). N addition enhanced N contents in green and senesced leaves by 17.32% and 25.62%, and P con-
tents in green and senesced leaves by 20.21% and 51.41%, but it significantly reduced N and P resorption
efficiency by 9.33% and 18.89% (P <C 0. 05). Combined warming and N addition increased leaf N and P
contents, and decreased resorption efficiency. (2) In the dry year(2017), warming and N addition, had no
significant effect on these plant nutrient characteristics. (3) Significant differences in leaf N and P contents
were found between the two species, and those of resorption efficiency were not observed. (4) Regression
analysis indicated that N and P concentrations in plant leaves increased with soil N, P and water availabili-
ty, while the resorption efficiency of plant N and P decreased with soil N, P and water availability, Re-
search showed that the responses of nutrient resorption to warming and N addition could be mediated by

variations of natural precipitation in a desert steppe.

Key words: global warming; nitrogen deposition; resorption efficiency; temperate grassland

T BT % 48 7R A5 AR AR B A 1 300k T R HL A
ARG g s AR, (TPCC 2Bk THIE 1.5 C 4534
H)fe i, kA 10 TR 0. 2+£0. D C, Har 4
BRARBE T kit &7t m 1 CL i i — i,
2030 4F5] 2052 4AEZ )ik E) 1.5 CH L HHFSR
T 88 35 250 R A T 5 i X ] 4 T I AT
SR = R AR A 0 kR R A5 R LR TR T B
(O VAN B (P) 55T 2 19 A= 1 Hb Bk £k 27 7 35 i
FEUT L R RE n) R L B R 4R BR O T 1 ) B, 4 )
] TR AT 2k S 184 T 17 e 3 A5 BF o 100 v
PEEHE AR 2030 AFEHE 35 5] 1. 05X 10° %, A
EEPERKRKE LG WERYIR, ESRENR
E 5 15 B TR A K 6 3R A Ry A AR . AT
Reg 338 o e 5 S 1) = 48 b m ] R R B A R AR Ak A
SEWAAR Y A 7 R Rl A T A A ERAE ALY R
T BRI T KA i X A 2 AL R AE 7 T e T
ORI C R R L SR T AE AR B 7K AN [R] 1) 4717 A 4
43 [SCGn o v 17 - 39 384 VR U TTC BTSSR AN 48

I 41 PSR A 0K 552 53 DA 28 2 BURG 7% 3 I A
RSB A ZU R AR 5 b il BT Y 3R
S HEE YA T — A K AR EE I D >
W Xt A A 4 1 35 o 41 45 Y 4K B B R AT A 3R
O LZA RS RGN E R TR NIER RLA E
BEN, FARBEMYRERARZNELERZ
— SR HIEAE A A BRI R R R R g
3 B R IR A3 I SRR B A 7 A R
AT IF 5 2% WA 14 3 A Sl 2k P 0 PR R Y A
WAk S 30 HE T ML AR A RO & B e M
REAR TR o0 DRI 0 AL b 303 %t 3% 43 [ i 1) 5 i

WA —B L . BUIREME b 2R 57—
AT AL WG A ) IR A e AR, s
AN A v D R R A A Ok B e R
S e I RO O 1 38 T R A R
A5 Ak, 11 28 I 3% 2 (NRE) FU [ 1 2 % (PRE) #)
Wi 5 208 o A ) 18 i 3 AR Yuan SV 3T
LEREARRE A T R AR RN AL NRE (8 % 3~
TFEAR PRE, A UL A PRE 952 W 8l 52 24, 4
R R AT 5 R AR R AT LS i w0 T A R T
L 857 1 95 % B0 20 2 0 08 TR 4w i
Rowe %R 58 3% B 0 2 W8 I B AR AE W s &5 &t Li
FH R R R I R B A EC R . ks,
348 YRR DT XoF 35 4 T A 1 5 i ] R 4 32 B 4R
K B B R A S B R AE K S BRI A2 2 R Gk 4y
SR A W M R R 43 106 PR i B AY A)
N 11 (1 I S o R A a3 I N 1 R 5
NRE i PRE™" , 3% i F1 20 U0 B A 3 280 g o 7%
G308 IR B4 5 T A 42 BRAE AR AR 0L S0 56 b B A i L R
17 8 22 8] 1) 58 A T 4 030 s 20 AR 20 4 00
)00 R, T R T 22 A0 A 5T 25 K I G I AN R
F NI A XA A IR RR AR S BAE L &
RN RS BAE R A AR I T F AR K AR 5

DAL 5% i e T8 R DR BT A o R R R
DX ) 1 B2 A R 48 o R FR 0 B L 6 IR AR AR A
N F o0 0% I FLA 0T 58 9000 oA >R 1% b X
T TR R UURR R IN T  H AR ST AE 2 AR AR
R KAE Gy (2016 [ AR BE K B i T K 4R 35 [ K &
5250, 2017 AFAR TR I IME 16 %0) . B8 2 A8 WL
R 5T X% 4, B C, 4 9 4R JK e £ (Convolvulus



9 ] e B AE A TR R AR B PR 3 T JRUR 0 ) 7 Bt T [ SR K A A o i 1653

ammannii) fl C, 4 K # ik (Kochia prostrata) .
AT B YRR I H AR K AR S T AR 3R 4y Ll
Xof K SO0 8 R AR 3R S ) i R AR S LA A Y DT A
FITUI R Ok 42 3K AR A1 5 F F b AR 25 R G W) A 26
FAE 7 ) Y 52 A
IR i S | WIRES
1.1 SRR

SR AR M AL TN 5 RO B 4 A iR B s T
I (111°53 E,41°46 N3 ik 1 456 m) . iZ
DX MR ) Jh Al R i P 2 XU s B ZE R AR
B ZAEER SRR N 3.70 C,7 AR RE
$20.70 C,1 A -FYIMEEMEH —15.7 C,
2016 4FE K Z(5~9 )RR M 15.77 C,7 A
T BE fe | o 19,60 C L2017 4R A4 K 2P AR N
17.75 C, @M BE 7 Ay, R 23.16 C,
2017 4FF-H3R 8 5 T 2016 4F (B 1) Z4EF 1k
KA 222 mm(2004~2017 4E,[&] 2), Hivp 85 % [
KEPTEAEKTES~9 H ., 524 FHREKEMLL.
2016 4F [ /K Bt (337 mm) #8 id £ 4F F 2 f K &
5206 H 6.7 A BRI Z 1M 2017 4F FE K 4 (185
mm) b ZAEBEAR 1620 (B 2), + 3 5485 1, %
- B AL Y R U BB D ETT AT 4y A L
BAR HIEBORN TR . LI X W R C, Ml
YR Mk (K. prostrata) F1 JC 1% & F B (Cleisto-
genes songorica), L M C; F ¥ 4B KiE4L (C. am-
mannii) & & (Artemisia frigida) fl 58 16 5 5
(Stipa breviflora) .,
1.2 SREi&it

SEUGREHL T 2006 4F 5 H # . R AKX
REAE N N T AR B A S @) SRR 12

—o— 2016 —0— 2017

257

33
(=]
T

/= yH
i
Air temperature/C
O

—
(=]
T

wn
T

4 5 6 7 8 9 10
H i} Month
BT 2016~2017 42 K Bk ACIRE 1O F 826 A5 A
Fig.1 Monthly dynamic variations of air temperature

during the growing seasons in 2016 and 2017

A3 mX4mFEX, EXEEE N 3 m, N 12 4 F
XA BENLEEHR 6 A AT 1 IR AL PR H 4y 6 S AHR
TAFEXPTH 24 3 m X2 m /X, Hp—
AT AR B IMAEB 55— D AB AR . Kt
A AR AL 6 DEE L S 24 DS
INIK . A BE AL 3 X IR (Control, CKD L %0 & %3 il (Ni-
trogen, N) . 3478 (Warming, W) 3475 FIA R 4k
[F)4b P (Warming + N, WN) , 3% 78 &b 338 53 i %
HuTAT 2. 25 m b B HE — > 2041 4R 5T A% (MSR-2420,
Kalglo Electronics Inc. Bethlehem, PA, USA) 5&
B AR RSN (] WA i DR 2 000 W S
T oA S 0 2 A A AT 3R Ok A S 6 1R 22 L AR
ANBE /N DR ) B 67 6 2238 1 55 AR A A% R/ AR
AR IR AR (8] = # B . 4 4 b 8 38 R IR B - 35 35 3
1.3 Co REWBMAM T84 6 A M7 K
NH,NO, % T 7K J5 FH W a8 2 51 B 7E /N XA, B R
WINE AR 10 g« m* « a L [R] IEAE A Y
/N DX 04 56 K sl B KT R B SR 1R 22
1.3 HmREMULFESH

P i AL ) TR A R A B 194 5 B 0 i) o
TEVE MR 22, 6 Y 17, 3% JERETE AL P 5 A
AL, TSR AR B 25 11 4F (2016 4F) Al
12 4F (2017 4F) , TAEW AR KRIE S 8 A Py fE B4
INXCRAE 2 R Y S A R R R B
F AR MR AR . 2 10 H R WA B R 4
KA MR . F 105 CF A& 10 min J5,7F 65
CHYMERT L 48 h BAETE RS FRE . HIBRIE AU
HE B B RE L AT A 3l B IR E AR (Kjektee
System 1026 distilling unit, Kjeltec Systems,Sweden)

/2016 2017

—0— 2004~20174EF- 34 7K
1501 Mean precipitation during 2004-2017

120 1

Nl
S
T

KK
Precipitation/mm
[
[«

w
(=]

H i Month

{2 2016~2017 4F4 K ZE[E KA AT 2004~2017 4F
T K R 1 2R AR AL
Fig. 2 Seasonal variations of natural precipitation during

the growing season in 2016, 2017 and in 2004 —2017



1654

[ |- W7

ne
¥

it 39 %

I e R R W A T AR B T L Ak
PO AT sE . H 4 & 7K (0~10 em) ff F 3K 43
IS W B P A /INEE I S — R . -3 TE AL
G R T 4 3 3 30 Y 9 4 7 (FTAstar 5000
Analyzer;Foss Tecator, Hillerod, Denmark) i#f 47 il
TE b HEAT BRSO AR B P L B0k Bk AT
et
L4 HiESH

(D) ey Zah 3t Fooa X0 Il sk R I 38 1l 4
SN RIE U WA RE e A I o A g
AXWT

RE(%)=[1—(N,/N,) X MLCF]x100"%*"

K RE FRoRF5 53 B s N HT N 53 ] 3%
7N R B i ARG e R B 3% & s MLCF
(mass loss correction factor) J& i & it 28 & 1 A F,
MLCF #y-F-¥{EHh 0. 73,

DGt o AHE S =W J7 22 50 B
G5 T 8 U R R U RS A ) gk o R ) U

*1
Table 1

AR IMORCR R R e AR BAR . dE 2l
FHIETVA G B A 56 7 4B ) R0 o i S iR 5 +
SR ERE S KB Z B KR, A NS5
Br ¥ i Fl SPSS20. 0 #5811 Sigmaplot i ff:
(Version 12. 5)YEA .,

2 ZER 55
2.1 EBEBEMAEZANMTEYRSERAOKETE

) % )

U 0 R R WS X i R RS ATl
BOR (NRE) ¥47 3 5200 (P <C 0. 05) , HLARfy [H] 25
S (P << 0.000 1.3 1), HIREMA RN
SRS A B ENLEAEH P << 0.05) ., 7EH
X2 AR (2016 4F) , 5 X5 BEAH b, 38 IR VAR B,
55 23R AN n 2 (] Ak PR AR R E K S R B i 3
FIIEAN T 14.42% .14. 52 % F1 18. 53 % , A Hb Pk & it
R R MIEIT 14. 22% .,20. 11 % 1 23. 63% (P
< 0.05, 18 3, 1) AR BT A6 Ak i 02 5 43 500 385

EEMREANMNEYRISEREABIEZMNESVNEFENTERF D
Repeated-measures of ANOVA results (F-value) of the effects of warming and N addition

on plant nutrient concentrations and resorption efficiency

Ao W it 5] Wi 55 %

N concentration/(mg * g~ ') P concentration/(mg « g~ 1) Resorption efficiency/ %

N, N, P, P. NRE PRE

1 Warming (W) 21.51" 11,41 4. 46 20,677 6.81" 3.32
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Fig.3 Responses of N and P concentrations in green and senesced leaves of C. ammannii

and K. prostrata to warming and N addition
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